11 resultados para Pharmaceutical Sciences (111504)

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to deliver the drug to the patient in a safe, efficacious and cost-effective manner depends largely on the physicochemical properties of the active pharmaceutical ingredient (API) in the solid state. In this context, crystallization is of critical importance in pharmaceutical industry, as it defines physical and powder properties of crystalline APIs. An improved knowledge of the various aspects of crystallization process is therefore needed. The overall goal of this thesis was to gain better understanding of the relationships between crystallization, solid-state form and properties of pharmaceutical solids with a focus on a crystal engineering approach to design technological properties of APIs. Specifically, solid-state properties of the crystalline forms of the model APIs, erythromycin A and baclofen, and the influence of solvent on their crystallization behavior were investigated. In addition, the physical phenomena associated with wet granulation and hot-melting processing of the model APIs were examined at the molecular level. Finally, the effect of crystal habit modification of a model API on its tabletting properties was evaluated. The thesis enabled the understanding of the relationship between the crystalline forms of the model APIs, which is of practical importance for solid-state control during processing and storage. Moreover, a new crystalline form, baclofen monohydrate, was discovered and characterized. Upon polymorph screening, erythromycin A demonstrated high solvate-forming propensity thus emphasizing the need for careful control of the solvent effects during formulation. The solvent compositions that yield the desirable crystalline form of erythromycin A were defined. Furthermore, new examples on solvent-mediated phase transformations taking place during wet granulation of baclofen and hot-melt processing of erythromycin A dihydrate with PEG 6000 are reported. Since solvent-mediated phase transformations involve the crystallization of a stable phase and hence affect the dissolution kinetics and possibly absorption of the API these transformations must be well documented. Finally, a controlled-crystallization method utilizing HPMC as a crystal habit modifier was developed for erythromycin A dihydrate. The crystals with modified habit were shown to posses improved compaction properties as compared with those of unmodified crystals. This result supports the idea of morphological crystal engineering as a tool for designing technological properties of APIs and is of utmost practical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for better understanding of the processes and new ideas to develop traditional pharmaceutical powder manufacturing procedures. Process analytical technology (PAT) has been developed to improve understanding of the processes and establish methods to monitor and control processes. The interest is in maintaining and even improving the whole manufacturing process and the final products at real-time. Process understanding can be a foundation for innovation and continuous improvement in pharmaceutical development and manufacturing. New methods are craved for to increase the quality and safety of the final products faster and more efficiently than ever before. The real-time process monitoring demands tools, which enable fast and noninvasive measurements with sufficient accuracy. Traditional quality control methods have been laborious and time consuming and they are performed off line i.e. the analysis has been removed from process area. Vibrational spectroscopic methods are responding this challenge and their utilisation have increased a lot during the past few years. In addition, other methods such as colour analysis can be utilised in noninvasive real-time process monitoring. In this study three pharmaceutical processes were investigated: drying, mixing and tabletting. In addition tablet properties were evaluated. Real-time monitoring was performed with NIR and Raman spectroscopies, colour analysis, particle size analysis and compression data during tabletting was evaluated using mathematical modelling. These methods were suitable for real-time monitoring of pharmaceutical unit operations and increase the knowledge of the critical parameters in the processes and the phenomena occurring during operations. They can improve our process understanding and therefore, finally, enhance the quality of final products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirjallisuuden- ja kulttuurintutkimus on viimeisten kolmen vuosikymmenen aikana tullut yhä enenevässä määrin tietoiseksi tieteen ja taiteen suhteen monimutkaisesta luonteesta. Nykyään näiden kahden kulttuurin tutkimus muodostaa oman kenttänsä, jolla niiden suhdetta tarkastellaan ennen kaikkea dynaamisena vuorovaikutuksena, joka heijastaa kulttuurimme kieltä, arvoja ja ideologisia sisältöjä. Toisin kuin aiemmat näkemykset, jotka pitävät tiedettä ja taidetta toisilleen enemmän tai vähemmän vastakkaisina pyrkimyksinä, nykytutkimus lähtee oletuksesta, jonka mukaan ne ovat kulttuurillisesti rakentuneita diskursseja, jotka kohtaavat usein samankaltaisia todellisuuden mallintamiseen liittyviä ongelmia, vaikka niiden käyttämät metodit eroavatkin toisistaan. Väitöskirjani keskittyy yllä mainitun suhteen osa-alueista popularisoidun tietokirjallisuuden (muun muassa Paul Davies, James Gleick ja Richard Dawkins) käyttämän kielen ja luonnontieteistä ideoita ammentavan kaunokirjallisuuden (muun muassa Jeanette Winterson, Tom Stoppard ja Richard Powers) hyödyntämien keinojen tarkasteluun nojautuen yli 30 teoksen kattavaa aineistoa koskevaan tyylin ja teemojen tekstianalyysiin. Populaarin tietokirjallisuuden osalta tarkoituksenani on osoittaa, että sen käyttämä kieli rakentuu huomattavassa määrin sellaisille rakenteille, jotka tarjoavat mahdollisuuden esittää todellisuutta koskevia argumentteja mahdollisimman vakuuttavalla tavalla. Tässä tehtävässä monilla klassisen retoriikan määrittelemillä kuvioilla on tärkeä rooli, koska ne auttavat liittämään sanotun sisällön ja muodon tiukasti toisiinsa: retoristen kuvioiden käyttö ei näin ollen edusta pelkkää tyylikeinoa, vaan se myös usein kiteyttää argumenttien taustalla olevat tieteenfilosofiset olettamukset ja auttaa vakiinnuttamaan argumentoinnin logiikan. Koska monet aikaisemmin ilmestyneistä tutkimuksista ovat keskittyneet pelkästään metaforan rooliin tieteellisissä argumenteissa, tämä väitöskirja pyrkii laajentamaan tutkimuskenttää analysoimalla myös toisenlaisten kuvioiden käyttöä. Osoitan myös, että retoristen kuvioiden käyttö muodostaa yhtymäkohdan tieteellisiä ideoita hyödyntävään kaunokirjallisuuteen. Siinä missä popularisoitu tiede käyttää retoriikkaa vahvistaakseen sekä argumentatiivisia että kaunokirjallisia ominaisuuksiaan, kuvaa tällainen sanataide tiedettä tavoilla, jotka usein heijastelevat tietokirjallisuuden kielellisiä rakenteita. Toisaalta on myös mahdollista nähdä, miten kaunokirjallisuuden keinot heijastuvat popularisoidun tieteen kerrontatapoihin ja kieleen todistaen kahden kulttuurin dynaamisesta vuorovaikutuksesta. Nykyaikaisen populaaritieteen retoristen elementtien ja kaunokirjallisuuden keinojen vertailu näyttää lisäksi, kuinka tiede ja taide osallistuvat keskusteluun kulttuurimme tiettyjen peruskäsitteiden kuten identiteetin, tiedon ja ajan merkityksestä. Tällä tavoin on mahdollista nähdä, että molemmat ovat perustavanlaatuisia osia merkityksenantoprosessissa, jonka kautta niin tieteelliset ideat kuin ihmiselämän suuret kysymyksetkin saavat kulttuurillisesti rakentuneen merkityksensä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this dissertation is to provide conceptual tools for the social scientist for clarifying, evaluating and comparing explanations of social phenomena based on formal mathematical models. The focus is on relatively simple theoretical models and simulations, not statistical models. These studies apply a theory of explanation according to which explanation is about tracing objective relations of dependence, knowledge of which enables answers to contrastive why and how-questions. This theory is developed further by delineating criteria for evaluating competing explanations and by applying the theory to social scientific modelling practices and to the key concepts of equilibrium and mechanism. The dissertation is comprised of an introductory essay and six published original research articles. The main theses about model-based explanations in the social sciences argued for in the articles are the following. 1) The concept of explanatory power, often used to argue for the superiority of one explanation over another, compasses five dimensions which are partially independent and involve some systematic trade-offs. 2) All equilibrium explanations do not causally explain the obtaining of the end equilibrium state with the multiple possible initial states. Instead, they often constitutively explain the macro property of the system with the micro properties of the parts (together with their organization). 3) There is an important ambivalence in the concept mechanism used in many model-based explanations and this difference corresponds to a difference between two alternative research heuristics. 4) Whether unrealistic assumptions in a model (such as a rational choice model) are detrimental to an explanation provided by the model depends on whether the representation of the explanatory dependency in the model is itself dependent on the particular unrealistic assumptions. Thus evaluating whether a literally false assumption in a model is problematic requires specifying exactly what is supposed to be explained and by what. 5) The question of whether an explanatory relationship depends on particular false assumptions can be explored with the process of derivational robustness analysis and the importance of robustness analysis accounts for some of the puzzling features of the tradition of model-building in economics. 6) The fact that economists have been relatively reluctant to use true agent-based simulations to formulate explanations can partially be explained by the specific ideal of scientific understanding implicit in the practise of orthodox economics.