50 resultados para Pathology oral
em Helda - Digital Repository of University of Helsinki
Resumo:
In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.
Resumo:
Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.
Resumo:
Suun kautta annosteltava kalsiumherkistäjä parantaa sydämen vajaatoimintaan liittyvää pumppausvajetta kokeellisissa sydämen vajaatoimintamalleissa Huolimatta viime vuosikymmenien lääketieteellisestä kehityksestä krooninen sydämen vajaatoiminta on silti edelleen vakava, elämänlaatua voimakkaasti rajoittava sairaus. Kalsiumherkistäjät ovat uusi, sydämen pumppausvoimaa lisäävä lääkeryhmä. Levosimendaani, kotimaista alkuperää oleva kalsiumherkistäjä, on kliinisessä käytössä akuutin vajaatoiminnan hoitoon suonensisäisesti ja lyhytaikaisesti annosteltavana valmisteena. Levosimendaanilla on aktiivinen metaboliitti, OR-1896, jonka oletetaan olevan vuorokauden mittaisen levosimendaani-infuusion jälkeen havaittujen useita päiviä kestävien hyödyllisisten vaikutuksisten takana. Levosimendaanin kroonisen, suun kautta tapahtuvan annostelun vaikutuksista tieto on vähäisempää, mutta sillä näyttää olevan positiivisia vaikutuksia potilaiden raportoimana. FM Marjut Louhelainen on selvittänyt väitöskirjassaan suun kautta annosteltavan levosimendaanin ja sen pitkäkestoisen aktiivisen metaboliitin vaikutuksia kroonisen vajaatoiminnan hoidossa käyttämällä sekä hypertensiivisen sydäntaudin että 2 tyypin diabeteksen komplisoimaan sydäninfarktin kokeellisia malleja. Tutkimuksessa selvitettiin lisäksi vajaatoimintaan johtavia molekyylitason tapahtumia sydänlihaksessa. Tutkimuksessa osoitettiin, että krooninen suun kautta annosteltu hoito sekä kalsiumherkistäjä levosimendaanilla että sen aktiivisella metaboliitilla estää hypertensiiviseen sydämen vajaatoiminnan aikaasaamaa sydämen uudelleenmuovaantumista ja siihen liittyvää kuolleisuutta. Nämä vaikutukset välittyivät vähentyneen sydänlihassoluhypertrofian, solukuolleisuuden ja neurohumaraalisen aktivaation kautta. Levosimendaanin ja OR-1896:n osoitettiin myös parantavan sydämen pumppausfunktiota tyyppi 2 diabeteksen komplisoimassa sydäninfarktissa. Ei-diabeettiseen tilanteeseen verrattuna diabetekseen liittyvä infarktin jälkeinen vajaatoiminnan kehitys oli yhteydessä lisääntyneeseen tulehdukseen, fibroosiin, solukuolemaan, neurohumoraaliseen aktivaatioon ja ennenaikaiseen kudoksen vanhenemiseen. Sekä levosimendaani, että OR-1869 vähensivät tulehduksen, fibroosin ja solukuoleman merkkejä ja vaimensi neurohumoraalista aktivaatiota. OR-1896 myös vähensi solujen vanhenemiseen liittyvien merkkiaineiden ilmentymistä. Väitöskirjassa todettiin, että suun kautta annosteltuna sekä levosimendaani, että sen aktiivinen metaboliitti OR-1896, omaavat terapeuttista potentiaalia sekä hypertensiivisen sydäntaudin hoitoon että sydäninfarktin jälkeisen vajaatoiminnan estoon. FM Marjut Louhelaisen farmakologian alaan kuuluva väitöskirja Effects of oral calcium sensitizers on experimental heart failure tarkastetaan Helsingin yliopiston Lääketieteellisessä tiedekunnassa perjantaina 29.01.2010 klo 12 (Biomedicum Helsinki, luentosali 2, Haartmaninkatu 8, Helsinki). Vastaväittäjänä toimii professori Raimo Tuominen, Helsingin yliopiston Farmasian tiedekunnasta ja kustoksena professori Eero Mervaala Helsingin yliopiston Lääketieteellisestä tiedekunnasta.
Resumo:
In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.
Resumo:
Yogurt consumption has been related to longevity of some populations living on the Balkans. Yogurt starter L. delbrueckii subsp. bulgaricus and Str. thermophilus have been recognized as probiotics with verified beneficial health effects. The oral cavity emerges as a arget for probiotic applications. Probiotics have demonstrated promising results in controlling dental diseases and oral yeast infections. However, L. bulgaricus despite its broad availability in dairy products has not been evaluated for probiotic activity in the mouth. These series of studies investigated in vitro properties of L. bulgaricus to outline its potential as an oral probiotic. Prerequisite probiotic properties in the mouth are resistance to oral defense mechanisms, adherence to saliva-coated surfaces, and inhibition of oral pathogens. L. bulgaricus strains showed a strain-dependent inhibition of oral streptococci and Aggregatibacter actinomycetemcomitans, whereas none of the dairy starter strains could affect growth of Porphyromonas gingivalis and Fusobacterium nucleatum. Adhesion is a factor contributing to colonization of the species at the target site. Radiolabeled L. bulgaricus strains and L. rhamnosus GG were tested for their ability to adhere to saliva-coated surfaces. The effects of lysozyme on adhesion and adhesion of Streptococcus sanguinis after lactobacilli pretreatment were also assessed. Adhesion of L. bulgaricus remained lower in comparison to L. rhamnosus GG. One L. bulgaricus strain showed binding frequency comparable to S. sanguinis. Lysozyme pretreatment significantly increased Lactobacillus adhesion. Low gelatinolytic activity was observed for all strains and no conversion of proMMP-9 to its active form was induced by L. bulgaricus. Safety assessment ruled out deleterious effects of L. bulgaricus on extracellular matrix structures. Cytokine response of oral epithelial cells was assessed by measuring IL-8 and TNF-α in cell culture supernatants. The effect of P. gingivalis on cytokine secretion after lactobacilli pretreatment was also assessed. A strain- and time-dependent induction of IL-8 was observed with live bacteria inducing the highest levels of cytokine secretion. Levels of TNF-α were low and only one of ten L. bulgaricus strains stimulated TNF-α secretion similar to positive control. The addition of P. gingivalis produced immediate reduction of cytokine levels within the first hours of incubation irrespective of lactobacilli strains co-cultured with epithelial cells. According to these studies strains among the L. delbrueckii subsp. bulgaricus species may have beneficial probiotic properties in the mouth. Their potential in prevention and management of common oral infectious diseases needs to be further studied.
Resumo:
The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.
Resumo:
Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.