19 resultados para Panel cointegration tests
em Helda - Digital Repository of University of Helsinki
Resumo:
This paper uses panel unit root and cointegration methods to test the stationarity of the premium on domestic investors’ A shares over foreign investors’ B shares and cointegration between the A and B share prices on the Chinese stock exchanges. We find that the A share price premium is nonstationary until 2001, when the A and B share markets were partially merged, and that the A and B share prices are cointegrated in the panel.Cointegration is more likely to be found for firms in the service sector and for firms that issued B shares recently.
Resumo:
The likelihood ratio test of cointegration rank is the most widely used test for cointegration. Many studies have shown that its finite sample distribution is not well approximated by the limiting distribution. The article introduces and evaluates by Monte Carlo simulation experiments bootstrap and fast double bootstrap (FDB) algorithms for the likelihood ratio test. It finds that the performance of the bootstrap test is very good. The more sophisticated FDB produces a further improvement in cases where the performance of the asymptotic test is very unsatisfactory and the ordinary bootstrap does not work as well as it might. Furthermore, the Monte Carlo simulations provide a number of guidelines on when the bootstrap and FDB tests can be expected to work well. Finally, the tests are applied to US interest rates and international stock prices series. It is found that the asymptotic test tends to overestimate the cointegration rank, while the bootstrap and FDB tests choose the correct cointegration rank.
Resumo:
Bootstrap likelihood ratio tests of cointegration rank are commonly used because they tend to have rejection probabilities that are closer to the nominal level than the rejection probabilities of the correspond- ing asymptotic tests. The e¤ect of bootstrapping the test on its power is largely unknown. We show that a new computationally inexpensive procedure can be applied to the estimation of the power function of the bootstrap test of cointegration rank. The bootstrap test is found to have a power function close to that of the level-adjusted asymp- totic test. The bootstrap test estimates the level-adjusted power of the asymptotic test highly accurately. The bootstrap test may have low power to reject the null hypothesis of cointegration rank zero, or underestimate the cointegration rank. An empirical application to Euribor interest rates is provided as an illustration of the findings.
Resumo:
Many economic events involve initial observations that substantially deviate from long-run steady state. Initial conditions of this type have been found to impact diversely on the power of univariate unit root tests, whereas the impact on multivariate tests is largely unknown. This paper investigates the impact of the initial condition on tests for cointegration rank. We compare the local power of the widely used likelihood ratio (LR) test with the local power of a test based on the eigenvalues of the companion matrix. We find that the power of the LR test is increasing in the magnitude of the initial condition, whereas the power of the other test is decreasing. The behaviour of the tests is investigated in an application to price convergence.
Resumo:
Mikael Juselius’ doctoral dissertation covers a range of significant issues in modern macroeconomics by empirically testing a number of important theoretical hypotheses. The first essay presents indirect evidence within the framework of the cointegrated VAR model on the elasticity of substitution between capital and labor by using Finnish manufacturing data. Instead of estimating the elasticity of substitution by using the first order conditions, he develops a new approach that utilizes a CES production function in a model with a 3-stage decision process: investment in the long run, wage bargaining in the medium run and price and employment decisions in the short run. He estimates the elasticity of substitution to be below one. The second essay tests the restrictions implied by the core equations of the New Keynesian Model (NKM) in a vector autoregressive model (VAR) by using both Euro area and U.S. data. Both the new Keynesian Phillips curve and the aggregate demand curve are estimated and tested. The restrictions implied by the core equations of the NKM are rejected on both U.S. and Euro area data. These results are important for further research. The third essay is methodologically similar to essay 2, but it concentrates on Finnish macro data by adopting a theoretical framework of an open economy. Juselius’ results suggests that the open economy NKM framework is too stylized to provide an adequate explanation for Finnish inflation. The final essay provides a macroeconometric model of Finnish inflation and associated explanatory variables and it estimates the relative importance of different inflation theories. His main finding is that Finnish inflation is primarily determined by excess demand in the product market and by changes in the long-term interest rate. This study is part of the research agenda carried out by the Research Unit of Economic Structure and Growth (RUESG). The aim of RUESG it to conduct theoretical and empirical research with respect to important issues in industrial economics, real option theory, game theory, organization theory, theory of financial systems as well as to study problems in labor markets, macroeconomics, natural resources, taxation and time series econometrics. RUESG was established at the beginning of 1995 and is one of the National Centers of Excellence in research selected by the Academy of Finland. It is financed jointly by the Academy of Finland, the University of Helsinki, the Yrjö Jahnsson Foundation, Bank of Finland and the Nokia Group. This support is gratefully acknowledged.
Resumo:
In the thesis we consider inference for cointegration in vector autoregressive (VAR) models. The thesis consists of an introduction and four papers. The first paper proposes a new test for cointegration in VAR models that is directly based on the eigenvalues of the least squares (LS) estimate of the autoregressive matrix. In the second paper we compare a small sample correction for the likelihood ratio (LR) test of cointegrating rank and the bootstrap. The simulation experiments show that the bootstrap works very well in practice and dominates the correction factor. The tests are applied to international stock prices data, and the .nite sample performance of the tests are investigated by simulating the data. The third paper studies the demand for money in Sweden 1970—2000 using the I(2) model. In the fourth paper we re-examine the evidence of cointegration between international stock prices. The paper shows that some of the previous empirical results can be explained by the small-sample bias and size distortion of Johansen’s LR tests for cointegration. In all papers we work with two data sets. The first data set is a Swedish money demand data set with observations on the money stock, the consumer price index, gross domestic product (GDP), the short-term interest rate and the long-term interest rate. The data are quarterly and the sample period is 1970(1)—2000(1). The second data set consists of month-end stock market index observations for Finland, France, Germany, Sweden, the United Kingdom and the United States from 1980(1) to 1997(2). Both data sets are typical of the sample sizes encountered in economic data, and the applications illustrate the usefulness of the models and tests discussed in the thesis.
Resumo:
ALICE (A Large Ion Collider Experiment) is an experiment at CERN (European Organization for Nuclear Research), where a heavy-ion detector is dedicated to exploit the unique physics potential of nucleus-nucleus interactions at LHC (Large Hadron Collider) energies. In a part of that project, 716 so-called type V4 modules were assembles in Detector Laboratory of Helsinki Institute of Physics during the years 2004 - 2006. Altogether over a million detector strips has made this project the most massive particle detector project in the science history of Finland. One ALICE SSD module consists of a double-sided silicon sensor, two hybrids containing 12 HAL25 front end readout chips and some passive components, such has resistors and capacitors. The components are connected together by TAB (Tape Automated Bonding) microcables. The components of the modules were tested in every assembly phase with comparable electrical tests to ensure the reliable functioning of the detectors and to plot the possible problems. The components were accepted or rejected by the limits confirmed by ALICE collaboration. This study is concentrating on the test results of framed chips, hybrids and modules. The total yield of the framed chips is 90.8%, hybrids 96.1% and modules 86.2%. The individual test results have been investigated in the light of the known error sources that appeared during the project. After solving the problems appearing during the learning-curve of the project, the material problems, such as defected chip cables and sensors, seemed to induce the most of the assembly rejections. The problems were typically seen in tests as too many individual channel failures. Instead, the bonding failures rarely caused the rejections of any component. One sensor type among three different sensor manufacturers has proven to have lower quality than the others. The sensors of this manufacturer are very noisy and their depletion voltage are usually outside of the specification given to the manufacturers. Reaching 95% assembling yield during the module production demonstrates that the assembly process has been highly successful.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.
Resumo:
Most new drug molecules discovered today suffer from poor bioavailability. Poor oral bioavailability results mainly from poor dissolution properties of hydrophobic drug molecules, because the drug dissolution is often the rate-limiting event of the drug’s absorption through the intestinal wall into the systemic circulation. During the last few years, the use of mesoporous silica and silicon particles as oral drug delivery vehicles has been widely studied, and there have been promising results of their suitability to enhance the physicochemical properties of poorly soluble drug molecules. Mesoporous silica and silicon particles can be used to enhance the solubility and dissolution rate of a drug by incorporating the drug inside the pores, which are only a few times larger than the drug molecules, and thus, breaking the crystalline structure into a disordered, amorphous form with better dissolution properties. Also, the high surface area of the mesoporous particles improves the dissolution rate of the incorporated drug. In addition, the mesoporous materials can also enhance the permeability of large, hydrophilic drug substances across biological barriers. T he loading process of drugs into silica and silicon mesopores is mainly based on the adsorption of drug molecules from a loading solution into the silica or silicon pore walls. There are several factors that affect the loading process: the surface area, the pore size, the total pore volume, the pore geometry and surface chemistry of the mesoporous material, as well as the chemical nature of the drugs and the solvents. Furthermore, both the pore and the surface structure of the particles also affect the drug release kinetics. In this study, the loading of itraconazole into mesoporous silica (Syloid AL-1 and Syloid 244) and silicon (TOPSi and TCPSi) microparticles was studied, as well as the release of itraconazole from the microparticles and its stability after loading. Itraconazole was selected for this study because of its highly hydrophobic and poorly soluble nature. Different mesoporous materials with different surface structures, pore volumes and surface areas were selected in order to evaluate the structural effect of the particles on the loading degree and dissolution behaviour of the drug using different loading parameters. The loaded particles were characterized with various analytical methods, and the drug release from the particles was assessed by in vitro dissolution tests. The results showed that the loaded drug was apparently in amorphous form after loading, and that the loading process did not alter the chemical structure of the silica or silicon surface. Both the mesoporous silica and silicon microparticles enhanced the solubility and dissolution rate of itraconazole. Moreover, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. Finally, the mesoporous silicon particles loaded with itraconazole were found to be unstable under stressed conditions (at 38 qC and 70 % relative humidity).
Resumo:
Recently, focus of real estate investment has expanded from the building-specific level to the aggregate portfolio level. The portfolio perspective requires investment analysis for real estate which is comparable with that of other asset classes, such as stocks and bonds. Thus, despite its distinctive features, such as heterogeneity, high unit value, illiquidity and the use of valuations to measure performance, real estate should not be considered in isolation. This means that techniques which are widely used for other assets classes can also be applied to real estate. An important part of investment strategies which support decisions on multi-asset portfolios is identifying the fundamentals of movements in property rents and returns, and predicting them on the basis of these fundamentals. The main objective of this thesis is to find the key drivers and the best methods for modelling and forecasting property rents and returns in markets which have experienced structural changes. The Finnish property market, which is a small European market with structural changes and limited property data, is used as a case study. The findings in the thesis show that is it possible to use modern econometric tools for modelling and forecasting property markets. The thesis consists of an introduction part and four essays. Essays 1 and 3 model Helsinki office rents and returns, and assess the suitability of alternative techniques for forecasting these series. Simple time series techniques are able to account for structural changes in the way markets operate, and thus provide the best forecasting tool. Theory-based econometric models, in particular error correction models, which are constrained by long-run information, are better for explaining past movements in rents and returns than for predicting their future movements. Essay 2 proceeds by examining the key drivers of rent movements for several property types in a number of Finnish property markets. The essay shows that commercial rents in local markets can be modelled using national macroeconomic variables and a panel approach. Finally, Essay 4 investigates whether forecasting models can be improved by accounting for asymmetric responses of office returns to the business cycle. The essay finds that the forecast performance of time series models can be improved by introducing asymmetries, and the improvement is sufficient to justify the extra computational time and effort associated with the application of these techniques.