5 resultados para Palos Heights
em Helda - Digital Repository of University of Helsinki
Resumo:
The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.
Resumo:
This study evaluates how the advection of precipitation, or wind drift, between the radar volume and ground affects radar measurements of precipitation. Normally precipitation is assumed to fall vertically to the ground from the contributing volume, and thus the radar measurement represents the geographical location immediately below. In this study radar measurements are corrected using hydrometeor trajectories calculated from measured and forecasted winds, and the effect of trajectory-correction on the radar measurements is evaluated. Wind drift statistics for Finland are compiled using sounding data from two weather stations spanning two years. For each sounding, the hydrometeor phase at ground level is estimated and drift distance calculated using different originating level heights. This way the drift statistics are constructed as a function of range from radar and elevation angle. On average, wind drift of 1 km was exceeded at approximately 60 km distance, while drift of 10 km was exceeded at 100 km distance. Trajectories were calculated using model winds in order to produce a trajectory-corrected ground field from radar PPI images. It was found that at the upwind side from the radar the effective measuring area was reduced as some trajectories exited the radar volume scan. In the downwind side areas near the edge of the radar measuring area experience improved precipitation detection. The effect of trajectory-correction is most prominent in instant measurements and diminishes when accumulating over longer time periods. Furthermore, measurements of intensive and small scale precipitation patterns benefit most from wind drift correction. The contribution of wind drift on the uncertainty of estimated Ze (S) - relationship was studied by simulating the effect of different error sources to the uncertainty in the relationship coefficients a and b. The overall uncertainty was assumed to consist of systematic errors of both the radar and the gauge, as well as errors by turbulence at the gauge orifice and by wind drift of precipitation. The focus of the analysis is error associated with wind drift, which was determined by describing the spatial structure of the reflectivity field using spatial autocovariance (or variogram). This spatial structure was then used with calculated drift distances to estimate the variance in radar measurement produced by precipitation drift, relative to the other error sources. It was found that error by wind drift was of similar magnitude with error by turbulence at gauge orifice at all ranges from radar, with systematic errors of the instruments being a minor issue. The correction method presented in the study could be used in radar nowcasting products to improve the estimation of visibility and local precipitation intensities. The method however only considers pure snow, and for operational purposes some improvements are desirable, such as melting layer detection, VPR correction and taking solid state hydrometeor type into account, which would improve the estimation of vertical velocities of the hydrometeors.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Landscape is shaped by natural environment and increasingly by human activity. In landscape ecology, the concept of landscape can be defined as a kilometre-scale mosaic formed by different land-use types. In Helsinki Metropolitan Region, the landscape change caused by urbanization has accelerated after the 1950s. Prior to that, the landscape of the region was mainly only shaped by agriculture. The goal of this study was in addition to describing the landscape change to discuss the factors impacting the landscape change and evaluate thelandscape ecological impacts of the change. Three study areas at different distances from Helsinki city centre were chosen in order to look at the landscape change. Study areas were Malmi, Espoo and Mäntsälä regions representing different parts of the urban-to-rural gradient in 1955, 1975, 1990 and 2009. Land-use of the maps was then digitized into five classes: agricultural lands, semi-natural grasslands, built areas, waters and others using GIS methods. First, landscape change was studied using landscape ecological indices. Indices used were PLAND i.e. the proportions of the different land-use types in the landscape; MPS, SHEI and SHDI which describe fragmentation and heterogeneity of the landscape; and MSI and ED which are measures of patch shape. Second, landscape change was studied statistically in relation to topography, soil and urban structure of the study areas. Indicators used concerning urban structure were number of residents, car ownership and travel-related zones of urban form which indicate the degree of urban sprawl within the study areas. For the statistical analyses, each of the 9.25 x 9.25 km sized study areas was further divided into grids with resolution of 0.25 x 0.25 kilometres. Third, the changes in the green structure of the study areas were evaluated. The landscape change reflected by the proportions of the land-use types was the most notable in Malmi area where a large amount of agricultural land was developed from 1955 to 2009. The proportion of semi-natural grasslands also showed an interesting pattern in relation to urbanization. When urbanization started, a great number of agricultural lands were abandoned and turned into semi-natural grasslands but as the urbanization accelerated, the number of semi-natural grasslands started to decline because of urban densification. Landscape fragmentation and heterogeneity were the most widespread in Espoo study area which is not only because of the great differences in relative heights within the region but also its location in the rural-urban fringe. According to the results, urbanization induced agricultural lands to be more regular in shape both spatially and temporally whereas for built areas and semi-natural grasslands the impact of urbanization was reverse. Changes in landscape were the most insignificant in the most rural study area Mäntsälä. In Mäntsälä, built area per resident showed the greatest values indicating a widespread urban sprawl. The values were the smallest in highly urbanized Malmi study area. Unlike other study areas, in Mäntsälä the proportion of developing land in the ecologically disadvantageous cardependent zone was on the increase. On the other hand, the green structure of the Mäntsälä study area was the most advantageous whereas Malmi study area showed the most ecologically disadvantageous structure. Considering all the landscape ecological criteria used, the landscape structure of Espoo study area proved to be the best not least because of the great heterogeneity of its landscape. Thus the study confirmed the previous results according to which landscape heterogeneity is the most significant in areas exposed to a moderate human impact.