3 resultados para P-Zn interaction
em Helda - Digital Repository of University of Helsinki
Resumo:
Background: Type 2 diabetes is linked to several complications which add to both physical and mental distress. Depression is a common co-morbidity of diabetes which can occur both as a cause and a consequence of type 2 diabetes. Depression has been shown to correlate with glucose regulation and treating depression might prove beneficial for glucose regulation as well as for mental well being. Another complication which might affect diabetes management is cognitive decline. Several risk factors and complications of diabetes might modify the risk for developing cognitive impairment, which is increased 1.5 times among subjects with type 2 diabetes. Type 2 diabetes, depression and impaired cognitive performance have all been linked to low birth weight. This thesis aimed to explore the effects and interactions of birth weight, depression and cognitive ability in relation to type 2 diabetes from a life course perspective. Subjects and methods: Studies I, II and V were part of the Helsinki Birth Cohort Study. 2003 subjects participated in an extensive clinical examination at an average age of 61 years. A standard glucose tolerance test (OGTT) was performed and depressive symptoms were assessed using the Beck Depression Inventory (BDI). In addition data was obtained from child welfare clinics and national registers. A subset of the cohort (n=1247) also performed a test on cognitive performance (CogState ®) at the average age of 64. Studies III and IV were randomised clinical trials where mildly depressed diabetic subjects were treated with paroxetine or placebo and the effect on metabolic parameters and quality of life was assessed. The first trial included 14 women and lasted 10 weeks, while the second trial included 43 subjects, both men and women, and lasted 6 months. Results: Type 2 diabetes was positively associated with the occurrence of depressive symptoms. Among diabetic subjects 23.6% had depressive symptoms, compared to 16.7% of subjects with normal glucose tolerance (OR = 1.77, p<0.001). Formal mediation analysis revealed that cardiovascular disease (CVD) is likely to act as a mediator in the association. Furthermore, low birth weight was found to modify the association between type 2 diabetes, CVD and depression. The association between BDI score and having type 2 diabetes or CVD was twice as strong in the subgroup with low birth weight (≤ 2500g) compared with the group with birth weight > 2500g (p for interaction 0.058). In the six months long randomised clinical trial (study IV) paroxetine had a transient beneficial effect on glycosylated haemoglobin A1c (GHbA1c) and quality of life when compared to placebo after three months of treatment. In study V we found that subjects with known diabetes had a consistently poorer level of cognitive performance than subjects with normal glucose tolerance in most of the tested cognitive domains. This effect was further amplified among those born with a small birth weight (p for interaction 0.002). Conclusions: Type 2 diabetes is associated with a higher occurrence of depressive symptoms compared to subjects with normal glucose tolerance. This association is especially strong among subjects with CVD and those born with a low birth weight. Treating depressed diabetic subjects with paroxetine has no long term effect on glucose regulation. Physicians should be aware of depression as an important co-morbidity of type 2 diabetes. Both depression and the cognitive decline often seen among diabetic subjects are increased if the subject is born with a low birth weight. Physicians should recognise low birth weight as an additional risk factor and modifier of diabetic complications.
Resumo:
Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.
Resumo:
Aim: To characterize the inhibition of platelet function by paracetamol in vivo and in vitro, and to evaluate the possible interaction of paracetamol and diclofenac or valdecoxib in vivo. To assess the analgesic effect of the drugs in an experimental pain model. Methods: Healthy volunteers received increasing doses of intravenous paracetamol (15, 22.5 and 30 mg/kg), or the combination of paracetamol 1 g and diclofenac 1.1 mg/kg or valdecoxib 40 mg (as the pro-drug parecoxib). Inhibition of platelet function was assessed with photometric aggregometry, the platelet function analyzer (PFA-100), and release of thromboxane B2. Analgesia was assessed with the cold pressor test. The inhibition coefficient of platelet aggregation by paracetamol was determined as well as the nature of interaction between paracetamol and diclofenac by an isobolographic analysis in vitro. Results: Paracetamol inhibited platelet aggregation and TxB2-release dose-dependently in volunteers and concentration-dependently in vitro. The inhibition coefficient was 15.2 mg/L (95% CI 11.8 - 18.6). Paracetamol augmented the platelet inhibition by diclofenac in vivo, and the isobole showed that this interaction is synergistic. Paracetamol showed no interaction with valdecoxib. PFA-100 appeared insensitive in detecting platelet dysfunction by paracetamol, and the cold-pressor test showed no analgesia. Conclusions: Paracetamol inhibits platelet function in vivo and shows synergism when combined with diclofenac. This effect may increase the risk of bleeding in surgical patients with an impaired haemostatic system. The combination of paracetamol and valdecoxib may be useful in patients with low risk for thromboembolism. The PFA-100 seems unsuitable for detection of platelet dysfunction and the cold-pressor test seems unsuitable for detection of analgesia by paracetamol.