6 resultados para Orbital mechanics

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on the influence of unilateral vocal fold paralysis on breathing, especially other than information obtained by spirometry, are relatively scarce. Even less is known about the effect of its treatment by vocal fold medialization. Consequently, there was a need to study the issue by combining multiple instruments capable of assessing airflow dynamics and voice. This need was emphasized by a recently developed medialization technique, autologous fascia injection; its effects on breathing have not previously been investigated. A cohort of ten patients with unilateral vocal fold paralysis was studied before and after autologous fascia injection by using flow-volume spirometry, body plethysmography and acoustic analysis of breathing and voice. Preoperative results were compared with those of ten healthy controls. A second cohort of 11 subjects with unilateral vocal fold paralysis was studied pre- and postoperatively by using flow-volume spirometry, impulse oscillometry, acoustic analysis of voice, voice handicap index and subjective assessment of dyspnoea. Preoperative peak inspiratory flow and specific airway conductance were significantly lower and airway resistance was significantly higher in the patients than in the healthy controls (78% vs. 107%, 73% vs. 116% and 182% vs. 125% of predicted; p = 0.004, p = 0.004 and p = 0.026, respectively). Patients had a higher root mean square of spectral power of tracheal sounds than controls, and three of them had wheezes as opposed to no wheezing in healthy subjects. Autologous fascia injection significantly improved acoustic parameters of the voice in both cohorts and voice handicap index in the latter cohort, indicating that this procedure successfully improved voice in unilateral vocal fold paralysis. Peak inspiratory flow decreased significantly as a consequence of this procedure (from 4.54 ± 1.68 l to 4.21 ± 1.26 l, p = 0.03, in pooled data of both cohorts), but no change occurred in the other variables of flow-volume spirometry, body-plethysmography and impulse oscillometry. Eight of the ten patients studied by acoustic analysis of breathing had wheezes after vocal fold medialization compared with only three patients before the procedure, and the numbers of wheezes per recorded inspirium and expirium increased significantly (from 0.02 to 0.42 and from 0.03 to 0.36; p = 0.028 and p = 0.043, respectively). In conclusion, unilateral vocal fold paralysis was observed to disturb forced breathing and also to cause some signs of disturbed tidal breathing. Findings of flow volume spirometry were consistent with variable extra-thoracic obstruction. Vocal fold medialization by autologous fascia injection improved the quality of the voice in patients with unilateral vocal fold paralysis, but also decreased peak inspiratory flow and induced wheezing during tidal breathing. However, these airflow changes did not appear to cause significant symptoms in patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient and statistically robust solution for the identification of asteroids among numerous sets of astrometry is presented. In particular, numerical methods have been developed for the short-term identification of asteroids at discovery, and for the long-term identification of scarcely observed asteroids over apparitions, a task which has been lacking a robust method until now. The methods are based on the solid foundation of statistical orbital inversion properly taking into account the observational uncertainties, which allows for the detection of practically all correct identifications. Through the use of dimensionality-reduction techniques and efficient data structures, the exact methods have a loglinear, that is, O(nlog(n)), computational complexity, where n is the number of included observation sets. The methods developed are thus suitable for future large-scale surveys which anticipate a substantial increase in the astrometric data rate. Due to the discontinuous nature of asteroid astrometry, separate sets of astrometry must be linked to a common asteroid from the very first discovery detections onwards. The reason for the discontinuity in the observed positions is the rotation of the observer with the Earth as well as the motion of the asteroid and the observer about the Sun. Therefore, the aim of identification is to find a set of orbital elements that reproduce the observed positions with residuals similar to the inevitable observational uncertainty. Unless the astrometric observation sets are linked, the corresponding asteroid is eventually lost as the uncertainty of the predicted positions grows too large to allow successful follow-up. Whereas the presented identification theory and the numerical comparison algorithm are generally applicable, that is, also in fields other than astronomy (e.g., in the identification of space debris), the numerical methods developed for asteroid identification can immediately be applied to all objects on heliocentric orbits with negligible effects due to non-gravitational forces in the time frame of the analysis. The methods developed have been successfully applied to various identification problems. Simulations have shown that the methods developed are able to find virtually all correct linkages despite challenges such as numerous scarce observation sets, astrometric uncertainty, numerous objects confined to a limited region on the celestial sphere, long linking intervals, and substantial parallaxes. Tens of previously unknown main-belt asteroids have been identified with the short-term method in a preliminary study to locate asteroids among numerous unidentified sets of single-night astrometry of moving objects, and scarce astrometry obtained nearly simultaneously with Earth-based and space-based telescopes has been successfully linked despite a substantial parallax. Using the long-term method, thousands of realistic 3-linkages typically spanning several apparitions have so far been found among designated observation sets each spanning less than 48 hours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article concerns a phenomenon of elementary quantum mechanics that is quite counter-intuitive, very non-classical, and apparently not widely known: a quantum particle can get reflected at a downward potential step. In contrast, classical particles get reflected only at upward steps. The conditions for this effect are that the wave length is much greater than the width of the potential step and the kinetic energy of the particle is much smaller than the depth of the potential step. This phenomenon is suggested by non-normalizable solutions to the time-independent Schroedinger equation, and we present evidence, numerical and mathematical, that it is also indeed predicted by the time-dependent Schroedinger equation. Furthermore, this paradoxical reflection effect suggests, and we confirm mathematically, that a quantum particle can be trapped for a long time (though not forever) in a region surrounded by downward potential steps, that is, on a plateau.