4 resultados para OD-21 undifferentiated pulp cells

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Embryonic stem cells offer potentially a ground-breaking insight into health and diseases and are said to offer hope in discovering cures for many ailments unimaginable few years ago. Human embryonic stem cells are undifferentiated, immature cells that possess an amazing ability to develop into almost any body cell such as heart muscle, bone, nerve and blood cells and possibly even organs in due course. This remarkable feature, enabling embryonic stem cells to proliferate indefinitely in vitro (in a test tube), has branded them as a so-called miracle cure . Their potential use in clinical applications provides hope to many sufferers of debilitating and fatal medical conditions. However, the emergence of stem cell research has resulted in intense debates about its promises and dangers. On the one hand, advocates hail its potential, ranging from alleviating and even curing fatal and debilitating diseases such as Parkinson s, diabetes, heart ailments and so forth. On the other hand, opponents decry its dangers, drawing attention to the inherent risks of human embryo destruction, cloning for research purposes and reproductive cloning eventually. Lately, however, the policy battles surrounding human embryonic stem cell innovation have shifted from being a controversial research to scuffles within intellectual property rights. In fact, the ability to obtain patents represents a pivotal factor in the economic success or failure of this new biotechnology. Although, stem cell patents tend to more or less satisfy the standard patentability requirements, they also raise serious ethical and moral questions about the meaning of the exclusions on ethical or moral grounds as found in European and to an extent American and Australian patent laws. At present there is a sort of a calamity over human embryonic stem cell patents in Europe and to an extent in Australia and the United States. This in turn has created a sense of urgency to engage all relevant parties in the discourse on how best to approach patenting of this new form of scientific innovation. In essence, this should become a highly favoured patenting priority. To the contrary, stem cell innovation and its reliance on patent protection risk turmoil, uncertainty, confusion and even a halt on not only stem cell research but also further emerging biotechnology research and development. The patent system is premised upon the fundamental principle of balance which ought to ensure that the temporary monopoly awarded to the inventor equals that of the social benefit provided by the disclosure of the invention. Ensuring and maintaining this balance within the patent system when patenting human embryonic stem cells is of crucial contemporary relevance. Yet, the patenting of human embryonic stem cells raises some fundamental moral, social and legal questions. Overall, the present approach of patenting human embryonic stem cell related inventions is unsatisfactory and ineffective. This draws attention to a specific question which provides for a conceptual framework for this work. That question is the following: how can the investigated patent offices successfully deal with patentability of human embryonic stem cells? This in turn points at the thorny issue of application of the morality clause in this field. In particular, the interpretation of the exclusions on ethical or moral grounds as found in Australian, American and European legislative and judicial precedents. The Thesis seeks to compare laws and legal practices surrounding patentability of human embryonic stem cells in Australia and the United States with that of Europe. By using Europe as the primary case study for lessons and guidance, the central goal of the Thesis then becomes the determination of the type of solutions available to Europe with prospects to apply such to Australia and the United States. The Dissertation purports to define the ethical implications that arise with patenting human embryonic stem cells and intends to offer resolutions to the key ethical dilemmas surrounding patentability of human embryonic stem cells and other morally controversial biotechnology inventions. In particular, the Thesis goal is to propose a functional framework that may be used as a benchmark for an informed discussion on the solution to resolving ethical and legal tensions that come with patentability of human embryonic stem cells in Australian, American and European patent worlds. Key research questions that arise from these objectives and which continuously thread throughout the monograph are: 1. How do common law countries such as Australia and the United States approach and deal with patentability of human embryonic stem cells in their jurisdictions? These practices are then compared to the situation in Europe as represented by the United Kingdom (first two chapters), the Court of Justice of the European Union and the European Patent Office decisions (Chapter 3 onwards) in order to obtain a full picture of the present patenting procedures on the European soil. 2. How are ethical and moral considerations taken into account at patent offices investigated when assessing patentability of human embryonic stem cell related inventions? In order to assess this part, the Thesis evaluates how ethical issues that arise with patent applications are dealt with by: a) Legislative history of the modern patent system from its inception in 15th Century England to present day patent laws. b) Australian, American and European patent offices presently and in the past, including other relevant legal precedents on the subject matter. c) Normative ethical theories. d) The notion of human dignity used as the lowest common denominator for the interpretation of the European morality clause. 3. Given the existence of the morality clause in form of Article 6(1) of the Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions which corresponds to Article 53(a) European Patent Convention, a special emphasis is put on Europe as a guiding principle for Australia and the United States. Any room for improvement of the European morality clause and Europe s current manner of evaluating ethical tensions surrounding human embryonic stem cell inventions is examined. 4. A summary of options (as represented by Australia, the United States and Europe) available as a basis for the optimal examination procedure of human embryonic stem cell inventions is depicted, whereas the best of such alternatives is deduced in order to create a benchmark framework. This framework is then utilised on and promoted as a tool to assist Europe (as represented by the European Patent Office) in examining human embryonic stem cell patent applications. This method suggests a possibility of implementing an institution solution. 5. Ultimately, a question of whether such reformed European patent system can be used as a founding stone for a potential patent reform in Australia and the United States when examining human embryonic stem cells or other morally controversial inventions is surveyed. The author wishes to emphasise that the guiding thought while carrying out this work is to convey the significance of identifying, analysing and clarifying the ethical tensions surrounding patenting human embryonic stem cells and ultimately present a solution that adequately assesses patentability of human embryonic stem cell inventions and related biotechnologies. In answering the key questions above, the Thesis strives to contribute to the broader stem cell debate about how and to which extent ethical and social positions should be integrated into the patenting procedure in pluralistic and morally divided democracies of Europe and subsequently Australia and the United States.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cells are responsible for tissue turnover throughout lifespan. Only highly controlled specific environment, the stem cell niche , can sustain undifferentiated stem cell-pool. The balance between maintenance and differentiation is crucial for individual s health: uncontrolled stem cell self-renewal or proliferation can lead to hyperplasia and mutations that further provoke malignant transformation of the cells. On the other hand, uninhibited differentiation may result in diminished stem cell population, which is unable to maintain tissue turnover. The mechanisms that control the switch from maintenance to differentiation in stem cells are not well known. The same mechanisms that direct the self-renewal and proliferation in normal stem cells are likely to be also involved in maintenance of cancer stem cell . Cancer stem cells exhibit stem cell like properties such as self-renewal- and differentiation capacity and they can also regenerate the tumor tissue. In this thesis, I have investigated the effect of classical oncogenes E6/E7 and c-Myc, tumor suppressors p53 and retinoblastoma (pRb) family, and vascular endothelial growth factor (VEGF) subfamily and glial cell line-derived neurothropic factor (GDNF) family ligands on behavior of embryonic neural stem cells (NSCs) and progenitors. The study includes also the characterization of cytoskeletal tumor suppressor neurofibromatosis 2 (NF2) protein merlin and ezrin-radixin-moesin (ERM) protein ezrin expression in neural progenitors cells and their progeny. This study reveals some potential mechanisms regarding to NSCs maintenance. In summary, the studied molecules are able to shift the balance either towards stem cell maintenance or differentiation; tumor suppressor p53 represses whereas E6/E7 oncogenes and c-Myc increase the proportion of self-renewing and proliferating NSCs or progenitors. The data suggests that active MEK-ERK signaling is critical for self-renewal of normal and oncogene expressing NSCs. In addition, the results indicate that expression of cytoskeletal tumor suppressor merlin and ERM protein ezrin in central nervous system (CNS) tissue and progenitors indicates their role in cell differentiation. Furthermore, the data suggests that VEGF-C a factor involved in lymphatic system development, angiogenesis, neovascularization and metastasis but also in maintenance of some neural populations in brain is a novel thropic factor for progenitors in early sympathetic nervous system (SNS). It seems that VEGF-C dose dependently through ERK-pathway supports the proliferation and survival of early sympathetic progenitor cells, and the effect is comparable to that of GDNF family ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs), especially the isoforms MCT1 - MCT4, cotransport lactate and protons across the cell membranes. They are thus essential for pH regulation and homeostasis in glycolytic cells such as red blood cells (RBCs), and skeletal muscle cells during intense exercise. In 70% of the Standardbred horses the lactate transport activity (TA) in RBCs is high and transport is mediated mainly by MCTs. In the rest 30% of the Standardbreds MCT mediated transport route is not active and the TA is low. MCTs need an ancillary protein for their proper localization and functioning in the plasma membrane. The ancillary protein for MCT1 and MCT4 is a member of immunoglobulin superfamily, CD147. Here we determined the expression of MCT isoforms and CD147 in equine RBCs and gluteal muscle. We sequenced the cDNA of horse MCT1 and CD147 to achieve horse-specific antibodies and to reveal sequence variations that may affect the TA of RBCs. The amount of MCT1 and CD147 mRNA in muscle were also studied. ---- In all, 73 horses representing different breeds were used. Blood samples were drawn from the jugular vein and muscle samples were taken either from gluteal muscle using biopsy needle or during castration from expendable cremaster muscle. The TA of RBCs was studied using radiolabeled lactate and the amount of MCT isoforms and CD147 in the plasma membranes using Western blotting. The level of mRNA in muscle cells was determined using qPCR. Isoforms MCT1 and MCT2 were found in the RBCs and isoforms MCT1 and MCT4 in the muscle cells of horses. The TA of RBCs was dependent on the expression of CD147 and MCT1 in the plasma membrane. Sequence variations were found in the cDNA of both MCT1 and CD147, but they did not explain the inactivity of MCT1 mediated transport route. The single nucleotide polymorphism (SNP) Met125Val in CD147 that existed parallel with an SNP in 3´-untranslated region explained, however, attenuation in CD147 expression in Standardbreds. A single mutation Ile51Val also decreased the expression of CD147 in one Warmblood. The MCT1 and CD147 mRNA concentrations in the gluteal muscle were higher in horses with higher MCT1 and CD147 expression in RBCs and lower in horses with minor expression of CD147 and MCT1. This suggests that the bimodal distribution of TA is due to differences in transcriptional regulation that is functioning in parallel in MCT1 and CD147 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factors play a key role in tumor development, in which dysfunction of genes regulating tissue growth and differentiation is a central phenomenon. The GATA family of transcription factors consists of six members that bind to a consensus DNA sequence (A/T)GATA(A/G) in gene promoters and enhancers. The two GATA factors expressed in the adrenal cortex are GATA-4 and GATA-6. In both mice and humans, GATA-4 can be detected only during the fetal period, whereas GATA-6 expression is abundant both throughout development and in the adult. It is already established that GATA factors are important in both normal development and tumorigenesis of several endocrine organs, and expression of GATA-4 and GATA-6 is detected in adrenocortical tumors. The aim of this study was to elucidate the function of these factors in adrenocortical tumor growth. In embryonal development, the adrenocortical cells arise and differentiate from a common pool with gonadal steroidogenic cells, the urogenital ridge. As the adult adrenal cortex undergoes constant renewal, it is hypothesized that undifferentiated adrenocortical progenitor cells reside adjacent to the adrenal capsule and give rise to daughter cells that differentiate and migrate centripetally. A diverse array of hormones controls the differentiation, growth and survival of steroidogenic cells in the adrenal gland and the gonads. Factors such as luteinizing hormone and inhibins, traditionally associated with gonadal steroidogenic cells, can also influence the function of adrenocortical cells in physiological and pathophysiological states. Certain inbred strains of mice develop subcapsular adrenocortical tumors in response to gonadectomy. In this study, we found that these tumors express GATA-4, normally absent from the adult adrenal cortex, while GATA-6 expression is downregulated. Gonadal markers such as luteinizing hormone receptor, anti-Müllerian hormone and P450c17 are also expressed in the neoplastic cells, and the tumors produce gonadal hormones. The tumor cells have lost the expression of melanocortin-2 receptor and the CYP enzymes necessary for the synthesis of corticosterone and aldosterone. By way of xenograft studies utilizing NU/J nude mice, we confirmed that chronic gonadotropin elevation is sufficient to induce adrenocortical tumorigenesis in susceptible inbred strains. Collectively, these studies suggest that subcapsular adrenocortical progenitor cells can, under certain conditions, adopt a gonadal fate. We studied the molecular mechanisms involved in gene regulation in endocrine cells in order to elucidate the role of GATA factors in endocrine tissues. Ovarian granulosa cells express both GATA-4 and GATA-6, and the TGF-β signaling pathway is active in these cells. Inhibin-α is both a target gene for, and an atypical or antagonistic member of the TGF-β growth factor superfamily. In this study, we show that GATA-4 is required for TGF-β-mediated inhibin-α promoter activation in granulosa cells, and that GATA-4 physically interacts with Smad3, a TGF-β downstream protein. Apart from the regulation of steroidogenesis and other events in normal tissues, TGF-β signaling is implicated in tumors of multiple organs, including the adrenal cortex. Another signaling pathway found often to be aberrantly active in adrenocortical tumors is the Wnt pathway. As both of these pathways regulate the expression of inhibin-α, a transcriptional target for GATA-4 and GATA-6, we wanted to investigate whether GATA factors are associated with the components of these signaling cascades in human adrenocortical tumors. We found that the expression of Wnt co-receptors LRP5 and LRP6, Smad3, GATA-6 and SF-1 was diminished in adrenocortical carcinomas with poor outcome. All of these factors drive inhibin-α expression, and their expression in adrenocortical tumors correlated with that of inhibin-α. The results support a tumor suppressor role previously suggested for inhibin-α in the mouse adrenal cortex, and offer putative pathways associated with adrenocortical tumor aggressiveness. Unraveling the role of GATA factors and associated molecules in human and mouse adrenocortical tumors could ultimately contribute to the development of diagnostic tools and future therapies for these diseases.