22 resultados para Numerical investigations

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of the environmental factors controlling earth surface processes and landform patterns is one of the central themes in physical geography. However, the identification of the main drivers of the geomorphological phenomena is often challenging. Novel spatial analysis and modelling methods could provide new insights into the process-environment relationships. The objective of this research was to map and quantitatively analyse the occurrence of cryogenic phenomena in subarctic Finland. More precisely, utilising a grid-based approach the distribution and abundance of periglacial landforms were modelled to identify important landscape scale environmental factors. The study was performed using a comprehensive empirical data set of periglacial landforms from an area of 600 km2 at a 25-ha resolution. The utilised statistical methods were generalized linear modelling (GLM) and hierarchical partitioning (HP). GLMs were used to produce distribution and abundance models and HP to reveal independently the most likely causal variables. The GLM models were assessed utilising statistical evaluation measures, prediction maps, field observations and the results of HP analyses. A total of 40 different landform types and subtypes were identified. Topographical, soil property and vegetation variables were the primary correlates for the occurrence and cover of active periglacial landforms on the landscape scale. In the model evaluation, most of the GLMs were shown to be robust although the explanation power, prediction ability as well as the selected explanatory variables varied between the models. The great potential of the combination of a spatial grid system, terrain data and novel statistical techniques to map the occurrence of periglacial landforms was demonstrated in this study. GLM proved to be a useful modelling framework for testing the shapes of the response functions and significances of the environmental variables and the HP method helped to make better deductions of the important factors of earth surface processes. Hence, the numerical approach presented in this study can be a useful addition to the current range of techniques available to researchers to map and monitor different geographical phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study of a rather new logic called dependence logic and its closure under classical negation, team logic. In this thesis, dependence logic is investigated from several aspects. Some rules are presented for quantifier swapping in dependence logic and team logic. Such rules are among the basic tools one must be familiar with in order to gain the required intuition for using the logic for practical purposes. The thesis compares Ehrenfeucht-Fraïssé (EF) games of first order logic and dependence logic and defines a third EF game that characterises a mixed case where first order formulas are measured in the formula rank of dependence logic. The thesis contains detailed proofs of several translations between dependence logic, team logic, second order logic and its existential fragment. Translations are useful for showing relationships between the expressive powers of logics. Also, by inspecting the form of the translated formulas, one can see how an aspect of one logic can be expressed in the other logic. The thesis makes preliminary investigations into proof theory of dependence logic. Attempts focus on finding a complete proof system for a modest yet nontrivial fragment of dependence logic. A key problem is identified and addressed in adapting a known proof system of classical propositional logic to become a proof system for the fragment, namely that the rule of contraction is needed but is unsound in its unrestricted form. A proof system is suggested for the fragment and its completeness conjectured. Finally, the thesis investigates the very foundation of dependence logic. An alternative semantics called 1-semantics is suggested for the syntax of dependence logic. There are several key differences between 1-semantics and other semantics of dependence logic. 1-semantics is derived from first order semantics by a natural type shift. Therefore 1-semantics reflects an established semantics in a coherent manner. Negation in 1-semantics is a semantic operation and satisfies the law of excluded middle. A translation is provided from unrestricted formulas of existential second order logic into 1-semantics. Also game theoretic semantics are considerd in the light of 1-semantics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The module of a quadrilateral is a positive real number which divides quadrilaterals into conformal equivalence classes. This is an introductory text to the module of a quadrilateral with some historical background and some numerical aspects. This work discusses the following topics: 1. Preliminaries 2. The module of a quadrilateral 3. The Schwarz-Christoffel Mapping 4. Symmetry properties of the module 5. Computational results 6. Other numerical methods Appendices include: Numerical evaluation of the elliptic integrals of the first kind. Matlab programs and scripts and possible topics for future research. Numerical results section covers additive quadrilaterals and the module of a quadrilateral under the movement of one of its vertex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical weather prediction (NWP) models provide the basis for weather forecasting by simulating the evolution of the atmospheric state. A good forecast requires that the initial state of the atmosphere is known accurately, and that the NWP model is a realistic representation of the atmosphere. Data assimilation methods are used to produce initial conditions for NWP models. The NWP model background field, typically a short-range forecast, is updated with observations in a statistically optimal way. The objective in this thesis has been to develope methods in order to allow data assimilation of Doppler radar radial wind observations. The work has been carried out in the High Resolution Limited Area Model (HIRLAM) 3-dimensional variational data assimilation framework. Observation modelling is a key element in exploiting indirect observations of the model variables. In the radar radial wind observation modelling, the vertical model wind profile is interpolated to the observation location, and the projection of the model wind vector on the radar pulse path is calculated. The vertical broadening of the radar pulse volume, and the bending of the radar pulse path due to atmospheric conditions are taken into account. Radar radial wind observations are modelled within observation errors which consist of instrumental, modelling, and representativeness errors. Systematic and random modelling errors can be minimized by accurate observation modelling. The impact of the random part of the instrumental and representativeness errors can be decreased by calculating spatial averages from the raw observations. Model experiments indicate that the spatial averaging clearly improves the fit of the radial wind observations to the model in terms of observation minus model background (OmB) standard deviation. Monitoring the quality of the observations is an important aspect, especially when a new observation type is introduced into a data assimilation system. Calculating the bias for radial wind observations in a conventional way can result in zero even in case there are systematic differences in the wind speed and/or direction. A bias estimation method designed for this observation type is introduced in the thesis. Doppler radar radial wind observation modelling, together with the bias estimation method, enables the exploitation of the radial wind observations also for NWP model validation. The one-month model experiments performed with the HIRLAM model versions differing only in a surface stress parameterization detail indicate that the use of radar wind observations in NWP model validation is very beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data assimilation provides an initial atmospheric state, called the analysis, for Numerical Weather Prediction (NWP). This analysis consists of pressure, temperature, wind, and humidity on a three-dimensional NWP model grid. Data assimilation blends meteorological observations with the NWP model in a statistically optimal way. The objective of this thesis is to describe methodological development carried out in order to allow data assimilation of ground-based measurements of the Global Positioning System (GPS) into the High Resolution Limited Area Model (HIRLAM) NWP system. Geodetic processing produces observations of tropospheric delay. These observations can be processed either for vertical columns at each GPS receiver station, or for the individual propagation paths of the microwave signals. These alternative processing methods result in Zenith Total Delay (ZTD) and Slant Delay (SD) observations, respectively. ZTD and SD observations are of use in the analysis of atmospheric humidity. A method is introduced for estimation of the horizontal error covariance of ZTD observations. The method makes use of observation minus model background (OmB) sequences of ZTD and conventional observations. It is demonstrated that the ZTD observation error covariance is relatively large in station separations shorter than 200 km, but non-zero covariances also appear at considerably larger station separations. The relatively low density of radiosonde observing stations limits the ability of the proposed estimation method to resolve the shortest length-scales of error covariance. SD observations are shown to contain a statistically significant signal on the asymmetry of the atmospheric humidity field. However, the asymmetric component of SD is found to be nearly always smaller than the standard deviation of the SD observation error. SD observation modelling is described in detail, and other issues relating to SD data assimilation are also discussed. These include the determination of error statistics, the tuning of observation quality control and allowing the taking into account of local observation error correlation. The experiments made show that the data assimilation system is able to retrieve the asymmetric information content of hypothetical SD observations at a single receiver station. Moreover, the impact of real SD observations on humidity analysis is comparable to that of other observing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pack ice is an aggregate of ice floes drifting on the sea surface. The forces controlling the motion and deformation of pack ice are air and water drag forces, sea surface tilt, Coriolis force and the internal force due to the interaction between ice floes. In this thesis, the mechanical behavior of compacted pack ice is investigated using theoretical and numerical methods, focusing on the three basic material properties: compressive strength, yield curve and flow rule. A high-resolution three-category sea ice model is applied to investigate the sea ice dynamics in two small basins, the whole Gulf Riga and the inside Pärnu Bay, focusing on the calibration of the compressive strength for thin ice. These two basins are on the scales of 100 km and 20 km, respectively, with typical ice thickness of 10-30 cm. The model is found capable of capturing the main characteristics of the ice dynamics. The compressive strength is calibrated to be about 30 kPa, consistent with the values from most large-scale sea ice dynamic studies. In addition, the numerical study in Pärnu Bay suggests that the shear strength drops significantly when the ice-floe size markedly decreases. A characteristic inversion method is developed to probe the yield curve of compacted pack ice. The basis of this method is the relationship between the intersection angle of linear kinematic features (LKFs) in sea ice and the slope of the yield curve. A summary of the observed LKFs shows that they can be basically divided into three groups: intersecting leads, uniaxial opening leads and uniaxial pressure ridges. Based on the available observed angles, the yield curve is determined to be a curved diamond. Comparisons of this yield curve with those from other methods show that it possesses almost all the advantages identified by the other methods. A new constitutive law is proposed, where the yield curve is a diamond and the flow rule is a combination of the normal and co-axial flow rule. The non-normal co-axial flow rule is necessary for the Coulombic yield constraint. This constitutive law not only captures the main features of forming LKFs but also takes the advantage of avoiding overestimating divergence during shear deformation. Moreover, this study provides a method for observing the flow rule for pack ice during deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.