6 resultados para New Jersey Railroad and Transportation Company.

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) homologues have been found in eukaryotic organisms ranging from yeast to humans. These evolutionary conserved proteins have in common the presence of an OSBP-related domain (ORD) which contains the fully conserved EQVSHHPP sequence motif. The ORD forms a barrel structure that binds sterols in its interior. Other domains and sequence elements found in OSBP-homologues include pleckstrin homology domains, ankyrin repeats and two phenylalanines in an acidic tract (FFAT) motifs, which target the proteins to distinct subcellular compartments. OSBP homologues have been implicated in a wide range of intracellular processes, including vesicle trafficking, lipid metabolism and cell signaling, but little is known about the functional mechanisms of these proteins. The human family of OSBP homologues consists of twelve OSBP-related proteins (ORP). This thesis work is focused on one of the family members, ORP1, of which two variants were found to be expressed tissue-specifically in humans. The shorter variant, ORP1S contains an ORD only. The N-terminally extended variant, ORP1L, comprises a pleckstrin homology domain and three ankyrin repeats in addition to the ORD. The two ORP1 variants differ in intracellular localization. ORP1S is cytosolic, while the ankyrin repeat region of ORP1L targets the protein to late endosomes/lysosomes. This part of ORP1L also has profound effects on late endosomal morphology, inducing perinuclear clustering of late endosomes. A central aim of this study was to identify molecular interactions of ORP1L on late endosomes. The morphological changes of late endosomes induced by overexpressed ORP1L implies involvement of small Rab GTPases, regulators of organelle motility, tethering, docking and/or fusion, in generation of the phenotype. A direct interaction was demonstrated between ORP1L and active Rab7. ORP1L prolongs the active state of Rab7 by stabilizing its GTP-bound form. The clustering of late endosomes/lysosomes was also shown to be linked to the minus end-directed microtubule-based dynein-dynactin motor complex through the ankyrin repeat region of ORP1L. ORP1L, Rab7 and the Rab7-interacting lysosomal protein (RILP) were found to be part of the same effector complex recruiting the dynein-dynactin complex to late endosomes, thereby promoting minus end-directed movement. The proteins were found to be physically close to each other on late endosomes and RILP was found to stabilize the ORP1L-Rab7 interaction. It is possible that ORP1L and RILP bind to each other through their C-terminal and N-terminal regions, respectively, when they are bridged by Rab7. With the results of this study we have been able to place a member of the uncharacterized OSBP-family, ORP1L, in the endocytic pathway, where it regulates motility and possibly fusion of late endosomes through interaction with the small GTPase Rab7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric aerosol particles have significant climatic effects. Secondary new particle formation is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapours participating in this process are, however, not truly understood. The recently developed Neutral cluster and Air Ion Spectrometer (NAIS) was widely used in field studies of atmospheric particle formation. The NAIS was calibrated and found to be in adequate agreement with the reference instruments. It was concluded that NAIS can be reliably used to measure ions and particles near the sizes where the atmospheric particle formation begins. The main focus of this thesis was to study new particle formation and participation of ions in this process. To attain this objective, particle and ion formation and growth rates were studied in various environments - at several field sites in Europe, in previously rarely studied sites in Antarctica and Siberia and also in an indoor environment. New particle formation was observed at all sites were studied and the observations were used as indicatives of the particle formation mechanisms. Particle size-dependent growth rates and nucleation mode hygroscopic growth factors were examined to obtain information on the particle growth. It was found that the atmospheric ions participate in the initial steps of new particle formation, although their contribution was minor in the boundary layer. The highest atmospheric particle formation rates were observed at the most polluted sites where the role of ions was the least pronounced. Furthermore, the increase of particle growth rate with size suggested that enhancement of the growth by ions was negligible. Participation of organic vapours in the particle growth was supported by laboratory and field observations. It was addressed that secondary new particle formation can also be a significant source of indoor air particles. These results, extending over a wide variety of environments, give support to previous observations and increase understanding on new particle formation on a global scale.