31 resultados para Nervous system--Degeneration--Treatment.

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of gestational diabetes (GDM) during pregnancy is a powerful sign of a risk of later type 2 diabetes (T2D) and cardiovascular diseases (CVDs). The physiological basis for this disease progression is not yet fully understood, but increasing evidence exists on interplay of insulin resistance, subclinical inflammation, and more recently, on unbalance of the autonomic nervous system. Since the delay in development of T2D and CVD after GDM ranges from years to decades, better understanding of the pathophysiology of GDM could give us new tools for primary prevention. The present study was aimed at investigating the role of the sympathetic nervous system (SNS) in GDM and its associations with insulin and a variety of inflammatory cytokines and coagulation and fibrinolysis markers. This thesis covers two separate study lines. Firstly, we investigated 41 women with GDM and 22 healthy pregnant and 14 non-pregnant controls during the night in hospital. Blood samples were drawn at 24:00, 4:00 and 7:00 h to determine the concentrations of plasma glucose, insulin, noradrenaline (NA) and adrenomedullin, markers of subclinical inflammation, coagulation and fibrinolysis variables and platelet function. Overnight holter ECG recording was performed for analysis of heart rate variability (HRV). Secondly, we studied 87 overweight hypertensive women with natural menopause. They were randomised to use a central sympatholytic agent, moxonidine (0.3mg twice daily), the β-blocking agent atenolol (50 mg once daily+blacebo once daily) for 8 weeks. Inflammatory markers and adiponectin were analysed at the beginning and after 8 weeks. Activation of the SNS (increase in NA, decreased HRV) was seen in pregnant vs. non-pregnant women, but no difference existed between GDM and normal pregnancy. However, modulation (internal rhythm) of HRV was attenuated in GDM. Insulin and inflammatory cytokine levels were comparable in all pregnant women but nocturnal variation of concentrations of C-reactive protein, serum amyloid A and insulin were reduced in GDM. Levels of coagulation factor VIII were lower in GDM compared with normal pregnancy, whereas no other differences were seen in coagulation and fibrinolysis markers. No significant associations were seen between NA and the studied parameters. In the study of postmenopausal women, moxonidine treatment was associated with favourable changes in the inflammatory profile, seen as a decrease in TNFα concentrations (increase in atenolol group) and preservation of adiponectin levels (decrease in atenolol group). In conclusion, our results did not support our hypotheses of increased SNS activity in GDM or a marked association between NA and inflammatory and coagulation markers. Reduced biological variation of HRV, insulin and inflammatory cytokines suggests disturbance of autonomic and hormonal regulatory mechanisms in GDM. This is a novel finding. Further understanding of the regulatory mechanisms could allow earlier detection of risk women and the possibility of prevention. In addition, our results support consideration of the SNS as one of the therapeutic targets in the battle against metabolic diseases, including T2D and CVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rituximab, a monoclonal antibody against B-cell specific CD20 antigen, is used for the treatment of non-Hodgkin lymphomas (NHL) and chronic lymphatic leukemia. In combination with chemotherapeutics rituximab has remarkably improved the outcome of NHL patients, but a vast variation in the lengths of remissions remains and the outcome of individual patients is difficult to predict. This thesis has searched for an explanation for this by studying the effector mechanisms of rituximab and by comparing gene expression in lymphoma tissue samples of patients with long- and short-term survival. This work demonstrated that activation of complement (C) system is in vitro more efficient effector mechanism of rituximab than cellular mechanisms or apoptosis. Activation of the C system was also shown in vivo during rituximab treatment. However, intravenously administered rituximab could not enter the cerebrospinal fluid, and neither C activation nor removal of lymphoma cells was observed in central nervous system. In vitro cytotoxicity assays showed that rituximab-induced cell killing could be markedly improved with simultaneous neutralization of the C regulatory proteins CD46 (Membrane cofactor protein), CD55 (Decay-accelerating factor), and CD59 (protectin). In a retrospective study of follicular lymphoma (FL) patients, low lymphoma tissue mRNA expressions of CD59 and CD55 were associated with a good prognosis and in a progressive flow cytometry study high expression of CD20 relative to CD55 was correlated to a longer progression free survival. Gene expression profile analysis revealed that expression of certain often cell cycle, signal transduction or immune response related genes correlate with clinical outcome of FL patients. Emphasizing the role of tumor microenvironment the best differentiating genes Smad1 and EphA1 were demonstrated to be mainly expressed in the non-malignant cells of tumors. In conclusion, this thesis shows that activation of the C system is a clinically important effector mechanism of rituximab and that microenvironment factor in tumors and expression of C regulatory proteins affect markedly the efficacy of immunochemotherapy. This data can be used to identify more accurately the patients for whom immunochemotherapy is given. It may also be beneficial in development of rituximab-containing and other monoclonal antibody therapies against cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson´s Disease (PD) is a neurodegenerative movement disorder resulting from loss of dopaminergic (DA) neurons in substantia nigra (SN). Possible causative treatment strategies for PD include neurotrophic factors, which protect and in some cases restore the function of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors have been to date the most promising candidates for treatment of PD, demonstrating both neuroprotective and neurorestorative properties. We have investigated the role of GDNF in the rodent dopaminergic system and its possible crosstalk with other growth factors. We characterized the GDNF-induced gene expression changes by DNA microarray analysis in different neuronal systems, including in vitro cultured Neuro2A cells treated with GDNF, as well as midbrains from GDNF heterozygous (Hz) knockout mice. These microarray experiments, resulted in the identification of GDNF-induced genes, which were also confirmed by other methods. Further analysis of the dopaminergic system of GDNF Hz mice demonstrated about 40% reduction in GDNF levels, revealed increased intracellular dopamine concentrations and FosB/DeltaFosB expression in striatal areas. These animals did not show any significant changes in behavioural analysis of acute and repeated cocaine administration on locomotor activity, nor did they exhibit any changes in dopamine output following treatment with acute cocaine. We further analysed the significance of GDNF receptor RET signalling in dopaminergic system of MEN2B knock-in animals with constitutively active Ret. The MEN2B animals showed a robust increase in extracellular dopamine and its metabolite levels in striatum, increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) protein levels by immunohistochemical staining and Western blotting, as well as increased Th mRNA levels in SN. MEN2B mice had increased number of DA neurons in SN by about 25% and they also exhibited increased sensitivity to the stimulatory effects of cocaine. We also developed a semi-throughput in vitro micro-island assay for the quantification of neuronal survival and TH levels by computer-assisted methodology from limited amounts of tissue. This assay can be applied for the initial screening for dopaminotrophic molecules, as well as chemical drug library screening. It is applicable to any neuronal system for the screening of neurotrophic molecules. Since our microarray experiments revealed possible GDNF-VEGF-C crosstalk we further concentrated on studying the neurotrophic effects of VEGF-C. We showed that VEGF-C acts as a neurotrophic molecule for the DA neurons both in vitro and in vivo, however without additive effect when used together with GDNF. The neuroprotective effect for VEGF-C in vivo in rat 6-OHDA model of PD was demonstrated. The possible signalling mechanisms of VEGF-C in the nervous system were investigated - infusion of VEGF-C to rat brain induced ERK activation, however no direct activation of RET signalling in vitro was found. VEGF-C treatment of rat striatum lead to up-regulation of VEGFR-1-3, indicating that VEGF-C can regulate the expression level of its own receptor. VEGF-C dopaminotrophic activity in vivo was further supported by increased vascular tissue in the neuroprotection experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system, characterized especially by myelin and axon damage. Cognitive impairment in MS is common but difficult to detect without a neuropsychological examination. Valid and reliable methods are needed in clinical practice and research to detect deficits, follow their natural evolution, and verify treatment effects. The Paced Auditory Serial Addition Test (PASAT) is a measure of sustained and divided attention, working memory, and information processing speed, and it is widely used in MS patients neuropsychological evaluation. Additionally, the PASAT is the sole cognitive measure in an assessment tool primarly designed for MS clinical trials, the Multiple Sclerosis Functional Composite (MSFC). The aims of the present study were to determine a) the frequency, characteristics, and evolution of cognitive impairment among relapsing-remitting MS patients, and b) the validity and reliability of the PASAT in measuring cognitive performance in MS patients. The subjects were 45 relapsing-remitting MS patients from Seinäjoki Central Hospital, Department of Neurology and 48 healthy controls. Both groups underwent comprehensive neuropsychological assessments, including the PASAT, twice in a one-year follow-up, and additionally a sample of 10 patients and controls were evaluated with the PASAT in serial assessments five times in one month. The frequency of cognitive dysfunction among relapsing-remitting MS patients in the present study was 42%. Impairments were characterized especially by slowed information processing speed and memory deficits. During the one-year follow-up, the cognitive performance was relatively stable among MS patients on a group level. However, the practice effects in cognitive tests were less pronounced among MS patients than healthy controls. At an individual level the spectrum of MS patients cognitive deficits was wide in regards to their characteristics, severity, and evolution. The PASAT was moderately accurate in detecting MS-associated cognitive impairment, and 69% of patients were correctly classified as cognitively impaired or unimpaired when comprehensive neuropsychological assessment was used as a "gold standard". Self-reported nervousness and poor arithmetical skills seemed to explain misclassifications. MS-related fatigue was objectively demonstrated as fading performance towards the end of the test. Despite the observed practice effect, the reliability of the PASAT was excellent, and it was sensitive to the cognitive decline taking place during the follow-up in a subgroup of patients. The PASAT can be recommended for use in the neuropsychological assessment of MS patients. The test is fairly sensitive, but less specific; consequently, the reasons for low scores have to be carefully identified before interpreting them as clinically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.