13 resultados para Nearshore Regions of Goa
em Helda - Digital Repository of University of Helsinki
Resumo:
The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric- speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno- Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno- Ugric-speakers strongly suggested that the lactase persistence T-13910 mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.
Resumo:
Malignant mesothelioma (MM) is a rare, usually incurable, disease mainly caused by former exposure to asbestos. Even though MM has a strong etiological link, genetic factors may play a role, since not all cases can be linked to former asbestos exposure. This thesis focuses on lung diseases, mainly malignant mesothelioma (MM), and idiopathic pulmonary fibrosis (IPF), which resembles asbestosis. The specific asbestos-related pathways associated with malignant as well as non-malignant lung diseases, still need to be clarified. Since most patients diagnosed with MM or asbestosis/fibrosis have a dismal prognosis and few therapeutic options are available, early diagnosis and better understanding of the disease pathogenesis are of the utmost importance. The first objective of this thesis was to identify asbestos specific differentially expressed genes. This was approached by using high-resolution gene expression arrays, and three different human lung cell lines, as well as with three different bioinformatics approaches. Since the first study aimed to elucidate potential early changes, the second study was used to screen DNA copy number changes in MM tumour samples. This was performed using genome wide microarrays for identification of DNA copy number changes characterstic for MM. Study III focused on the role of gremlin in the regulation of bone morphogenetic protein (BMPs) in IPF. Further studies were conducted in asbestos-exposed cell cultures as well as in an asbestos-induced mouse model. Furthermore, GATA-6 was studied in MM and metastatic pleural adenocarcinoma. The GATA transcription factors are important during embryonic development, but their role in cancer is still unclear. GATA-6 is a co-factor/target of thyroid transcription factor 1 (TTF-1), which is used in differential diagnostics of pleural MM and adenocarcinoma. Bioinformatics probed the genes and biological processes ordered in terms of significance, clusters, and highly enriched chromosomal regions. The study revealed several already identified targets, produced new ideas about genes which are central for asbestos exposure, as well as provided supplementary data for researchers to check their own novel findings or ideas. The analysis revealed DNA copy number changes characteristic for MM tumors. The most common regions of loss were detected in 1p, 3p, 6q, 9p, 13, 14, and 22, and gains at 17q. The histological features in asbestosis and IPF are very similar, wherefore IPF can be studied in asbestos models. The BMP antagonist gremlin was up-regulated by asbestos exposure in human epithelial cell lines, which was also observed in Study I. The transforming growth factor (TGF) -β and BMP expression and signaling activities were measured from murine and human fibrotic lungs. BMP-7 signaling was down-regulated in response to up-regulation of gremlin, and restoration of BMP-7 signaling prevented progression of fibrosis in mice. Therefore, the study suggests that the restoration of BMP-7 signaling in fibrotic lung could potentially aid in the treatment of IPF patients. Study IV revealed that GATA-6 was strongly expressed in the majority of the MM cases, and correlated statistically significant with longer survival in subgroups of MM.
Resumo:
The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
Aerosol particles can cause detrimental environmental and health effects. The particles and their precursor gases are emitted from various anthropogenic and natural sources. It is important to know the origin and properties of aerosols to efficiently reduce their harmful effects. The diameter of aerosol particles (Dp) varies between ~0.001 and ~100 μm. Fine particles (PM2.5: Dp < 2.5 μm) are especially interesting because they are the most harmful and can be transported over long distances. The aim of this thesis is to study the impact on air quality by pollution episodes of long-range transported aerosols affecting the composition of the boundary-layer atmosphere in remote and relatively unpolluted regions of the world. The sources and physicochemical properties of aerosols were investigated in detail, based on various measurements (1) in southern Finland during selected long-range transport (LRT) pollution episodes and unpolluted periods and (2) over the Atlantic Ocean between Europe and Antarctica during a voyage. Furthermore, the frequency of LRT pollution episodes of fine particles in southern Finland was investigated over a period of 8 years, using long-term air quality monitoring data. In southern Finland, the annual mean PM2.5 mass concentrations were low but LRT caused high peaks of daily mean concentrations every year. At an urban background site in Helsinki, the updated WHO guideline value (24-h PM2.5 mean 25 μg/m3) was exceeded during 1-7 LRT episodes each year during 1999-2006. The daily mean concentrations varied between 25 and 49 μg/m3 during the episodes, which was 3-6 times higher than the mean concentration in the long term. The in-depth studies of selected LRT episodes in southern Finland revealed that biomass burning in agricultural fields and wildfires, occurring mainly in Eastern Europe, deteriorated air quality on a continental scale. The strongest LRT episodes of fine particles resulted from open biomass-burning fires but the emissions from other anthropogenic sources in Eastern Europe also caused significant LRT episodes. Particle mass and number concentrations increased strongly in the accumulation mode (Dp ~ 0.09-1 μm) during the LRT episodes. However, the concentrations of smaller particles (Dp < 0.09 μm) remained low or even decreased due to the uptake of vapours and molecular clusters by LRT particles. The chemical analysis of individual particles showed that the proportions of several anthropogenic particle types increased (e.g. tar balls, metal oxides/hydroxides, spherical silicate fly ash particles and various calcium-rich particles) in southern Finland during an LRT episode, when aerosols originated from the polluted regions of Eastern Europe and some open biomass-burning smoke was also brought in by LRT. During unpolluted periods when air masses arrived from the north, the proportions of marine aerosols increased. In unpolluted rural regions of southern Finland, both accumulation mode particles and small-sized (Dp ~ 1-3 μm) coarse mode particles originated mostly from LRT. However, the composition of particles was totally different in these size fractions. In both size fractions, strong internal mixing of chemical components was typical for LRT particles. Thus, the aging of particles has significant impacts on their chemical, hygroscopic and optical properties, which can largely alter the environmental and health effects of LRT aerosols. Over the Atlantic Ocean, the individual particle composition of small-sized (Dp ~ 1-3 μm) coarse mode particles was affected by continental aerosol plumes to distances of at least 100-1000 km from the coast (e.g. pollutants from industrialized Europe, desert dust from the Sahara and biomass-burning aerosols near the Gulf of Guinea). The rate of chloride depletion from sea-salt particles was high near the coasts of Europe and Africa when air masses arrived from polluted continental regions. Thus, the LRT of continental aerosols had significant impacts on the composition of the marine boundary-layer atmosphere and seawater. In conclusion, integration of the results obtained using different measurement techniques captured the large spatial and temporal variability of aerosols as observed at terrestrial and marine sites, and assisted in establishing the causal link between land-bound emissions, LRT and air quality.
Resumo:
Gastric cancer is the fourth most common cancer and the second most common cause of cancer-related death worldwide. Due to lack of early symptoms, gastric cancer is characterized by late stage diagnosis and unsatisfactory options for curative treatment. Several genomic alterations have been identified in gastric cancer, but the major factors contributing to initiation and progression of gastric cancer remain poorly known. Gene copy number alterations play a key role in the development of gastric cancer, and a change in gene copy number is one of the fundamental mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. This thesis aims at clarifying the complex genomic alterations of gastric cancer to identify novel molecular biomarkers for diagnostic purposes as well as for targeted treatment. To highlight genes of potential biological and clinical relevance, we carried out a systematic microarray-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines. Results were validated using immunohistochemistry, real-time qRT-PCR, and affinity capture-based transcript (TRAC) assay. Altogether 192 clinical gastric tissue samples and 7 gastric cancer cell lines were included in this study. Multiple chromosomal regions with recurrent copy number alterations were detected. The most frequent chromosomal alterations included gains at 7q, 8q, 17q, 19q, and 20q and losses at 9p, 18q, and 21q. Distinctive patterns of copy number alterations were detected for different histological subtypes (intestinal and diffuse) and for cancers located in different parts of the stomach. The impact of copy number alterations on gene expression was significant, as 6-10% of genes located in the regions of gains and losses also showed concomitant alterations in their expression. By combining the information from the DNA- and RNA-level analyses many novel gastric cancer-related genes, such as ALPK2, ENAH, HHIPL2, and OSMR, were identified. Independent genome-wide gene expression analysis of Finnish and Japanese gastric tumors revealed an additional set of genes that was differentially expressed in cancerous gastric tissues compared with normal tissue. Overexpression of one of these genes, CXCL1, was associated with an improved survival of gastric cancer. Thus, using an integrative microarray analysis, several novel genes were identified that may be critically important for gastric carcinogenesis. Further studies of these genes may lead to novel biomarkers for gastric cancer diagnosis and targeted therapy.
Resumo:
Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Einstein's general relativity is a classical theory of gravitation: it is a postulate on the coupling between the four-dimensional, continuos spacetime and the matter fields in the universe, and it yields their dynamical evolution. It is believed that general relativity must be replaced by a quantum theory of gravity at least at extremely high energies of the early universe and at regions of strong curvature of spacetime, cf. black holes. Various attempts to quantize gravity, including conceptually new models such as string theory, have suggested that modification to general relativity might show up even at lower energy scales. On the other hand, also the late time acceleration of the expansion of the universe, known as the dark energy problem, might originate from new gravitational physics. Thus, although there has been no direct experimental evidence contradicting general relativity so far - on the contrary, it has passed a variety of observational tests - it is a question worth asking, why should the effective theory of gravity be of the exact form of general relativity? If general relativity is modified, how do the predictions of the theory change? Furthermore, how far can we go with the changes before we are face with contradictions with the experiments? Along with the changes, could there be new phenomena, which we could measure to find hints of the form of the quantum theory of gravity? This thesis is on a class of modified gravity theories called f(R) models, and in particular on the effects of changing the theory of gravity on stellar solutions. It is discussed how experimental constraints from the measurements in the Solar System restrict the form of f(R) theories. Moreover, it is shown that models, which do not differ from general relativity at the weak field scale of the Solar System, can produce very different predictions for dense stars like neutron stars. Due to the nature of f(R) models, the role of independent connection of the spacetime is emphasized throughout the thesis.
Resumo:
The aim of this study was to estimate the development of fertility in North-Central Namibia, former Ovamboland, from 1960 to 2001. Special attention was given to the onset of fertility decline and to the impact of the HIV epidemic on fertility. An additional aim was to introduce parish registers as a source of data for fertility research in Africa. Data used consisted of parish registers from Evangelical Lutheran congregations, the 1991 and 2001 Population and Housing Censuses, the 1992 and 2000 Namibia Demographic and Health Surveys, and the HIV sentinel surveillances of 1992-2004. Both period and cohort fertility were analysed. The P/F ratio method was used when analysing census data. The impact of HIV infection on fertility was estimated indirectly by comparing the fertility histories of women who died at an age of less than 50 years with the fertility of other women. The impact of the HIV epidemic on fertility was assessed both among infected women and in the general population. Fertility in the study population began to decline in 1980. The decline was rapid during the 1980s, levelled off in the early 1990s at the end of war of independence and then continued to decline until the end of the study period. According to parish registers, total fertility was 6.4 in the 1960s and 6.5 in the 1970s, and declined to 5.1 in the 1980s and 4.2 in the 1990s. Adjustment of these total fertility rates to correspond to levels of fertility based on data from the 1991 and 2001 censuses resulted in total fertility declining from 7.6 in 1960-79 to 6.0 in 1980-89, and to 4.9 in 1990-99. The decline was associated with increased age at first marriage, declining marital fertility and increasing premarital fertility. Fertility among adolescents increased, whereas the fertility of women in all other age groups declined. During the 1980s, the war of independence contributed to declining fertility through spousal separation and delayed marriages. Contraception has been employed in the study region since the 1980s, but in the early 1990s, use of contraceptives was still so limited that fertility was higher in North-Central Namibia than in other regions of the country. In the 1990s, fertility decline was largely a result of the increased prevalence of contraception. HIV prevalence among pregnant women increased from 4% in 1992 to 25% in 2001. In 2001, total fertility among HIV-infected women (3.7) was lower than that among other women (4.8), resulting in total fertility of 4.4 among the general population in 2001. The HIV epidemic explained more than a quarter of the decline in total fertility at population level during most of the 1990s. The HIV epidemic also reduced the number of children born by reducing the number of potential mothers. In the future, HIV will have an extensive influence on both the size and age structure of the Namibian population. Although HIV influences demographic development through both fertility and mortality, the effect through changes in fertility will be smaller than the effect through mortality. In the study region, as in some other regions of southern Africa, a new type of demographic transition is under way, one in which population growth stagnates or even reverses because of the combined effects of declining fertility and increasing mortality, both of which are consequences of the HIV pandemic.
Resumo:
Biological invasions affect biodiversity worldwide, and, consequently, the invaded ecosystems may suffer from significant losses in economic and cultural values. Impatiens glandulifera Royle (Balsaminaceae) is an invasive annual herb, native to the western Himalayas and introduced into Europe in the 19th century as a garden ornamental plant. The massive invasion of I. glandulifera is due to its high reproductive output, rapid growth and its ability to outcompete native species. In Finland, the first observations regarding the presence of I. glandulifera date from the year 1947, and today it is considered a serious problem in riparian habitats. The aim of this master’s thesis research is to reveal the population genetic structure of I. glandulifera in Finland and to find out whether there have been one or multiple invasions in Finland. The study focuses on investigating the origin of I. glandulifera in Southern Finland, by comparing plant samples from the Helsinki region with those from its native region and other regions of invasion. Samples from four populations in Helsinki and from the United Kingdom, Canada, India and Pakistan were collected and genotyped using 11 microsatellite markers. The genetic analyses were evaluated using the programs Arlequin and Structure. The results of the genetic analyses suggested that I. glandulifera has been introduced to Finland more than once. Multiple introductions are supported by the higher level of genetic diversity detected within and among Finnish populations than would be expected for a single introduction. Results of the Bayesian Structure analysis divided the four Finnish populations into four clusters. This geographical structure was further supported by pairwise Fst values among populations. The causes and potential consequences of such multiple introductions of I. glandulifera in Finland and further perspectives are discussed.
Resumo:
Humic lakes are abundant in the temperate and cold regions of the Boreal Zone. High levels of water colour and strong thermal stratification of humic lakes limit the potential fish habitats and give a special role to the intraspecific and interspecific interactions. Water colour has different effects on species depending on species-specific life-history traits and trophic interactions. Fish species whose success in predation is based on visual cues are more susceptible to suffer in competition. The main aim of the thesis was to demonstrate the effects of water colour on European perch (Perca fluviatilis) in humic lakes. The contribution of water colour to diet, feeding, growth and competitive interactions of fish was studied both in laboratory and in small humic lakes with varying levels of water colour. The main findings of the thesis were that water colour has different effects on species, depending on species-specific life-history traits and trophic interactions. Water colour affected visually-oriented perch feeding and growth negatively, and the prolonged benthic feeding phase of perch resulting from the increased water colour could increase intraspecific competition in perch populations and may result in a partial bottleneck in growth for perch. Moreover, water colour may act as a proximate factor behind the population dependency of sexual growth dimorphism in perch.
Resumo:
The Iberian Peninsula is recognized as an important refugial area for species survival and diversification during the climatic cycles of the Quaternary. Recent phylogeographic studies have revealed Iberia as a complex of multiple refugia. However, most of these studies have focused either on species with narrow distributions within the region or species groups that, although widely distributed, generally have a genetic structure that relates to pre-Quaternary cladogenetic events. In this study we undertake a detailed phylogeographic analysis of the lizard species, Lacerta lepida, whose distribution encompasses the entire Iberian Peninsula. We attempt to identify refugial areas, recolonization routes, zones of secondary contact and date demographic events within this species. Results support the existence of 6 evolutionary lineages (phylogroups) with a strong association between genetic variation and geography, suggesting a history of allopatric divergence in different refugia. Diversification within phylogroups is concordant with the onset of the Pleistocene climatic oscillations. The southern regions of several phylogroups show a high incidence of ancestral alleles in contrast with high incidence of recently derived alleles in northern regions. All phylogroups show signs of recent demographic and spatial expansions. We have further identified several zones of secondary contact, with divergent mitochondrial haplotypes occurring in narrow zones of sympatry. The concordant patterns of spatial and demographic expansions detected within phylogroups, together with the high incidence of ancestral haplotypes in southern regions of several phylogroups, suggests a pattern of contraction of populations into southern refugia during adverse climatic conditions from which subsequent northern expansions occurred. This study supports the emergent pattern of multiple refugia within Iberia but adds to it by identifying a pattern of refugia coincident with the southern distribution limits of individual evolutionary lineages. These areas are important in terms of long-term species persistence and therefore important areas for conservation.