6 resultados para Muscle tissue

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The actin cytoskeleton is essential for a large variety of cell biological processes. Actin exists in either a monomeric or a filamentous form, and it is very important for many cellular functions that the local balance between these two actin populations is properly regulated. A large number of proteins participate in the regulation of actin dynamics in the cell, and twinfilin, one of the proteins examined in this thesis, belongs to this category. The second level of regulation involves proteins that crosslink or bundle actin filaments, thereby providing the cell with a certain shape. α-Actinin, the second protein studied, mainly acts as an actin crosslinking protein. Both proteins are conserved in organisms ranging from yeast to mammals. In this thesis, the roles of twinfilin and α-actinin in development were examined using Drosophila melanogaster as a model organism. Twinfilin is an actin monomer binding protein that is structurally related to cofilin. In vitro, twinfilin reduces actin polymerisation by sequestering actin monomers. The Drosophila twinfilin (twf) gene was identified and found to encode a protein functionally similar to yeast and mammalian twinfilins. A strong hypomorphic twf mutation was identified, and flies homozygous for this allele were viable and fertile. The adult twf mutant flies displayed reduced viability, a rough eye phenotype and severely malformed bristles. The shape of the adult bristle is determined by the actin bundles that are regularly spaced around the perimeter of the developing pupal bristles. Examination of the twf pupal bristles revealed an increased level of filamentous actin, which in turn resulted in splitting and displacement of the actin bundles. The bristle defect was rescued by twf overexpression in developing bristles. The Twinfilin protein was localised at sites of actin filament assembly, where it was required to limit actin polymerisation. A genetic interaction between twinfilin and twinstar (the gene encoding Cofilin) was detected, consistent with the model predicting that both proteins act to limit the amount of filamentous actin. α-Actinin has been implicated in several diverse cell biological processes. In Drosophila, the only function for α-actinin yet known is in the organisation of the muscle sarcomere. Muscle and non-muscle cells utilise different α-actinin isoforms, which in Drosophila are produced by alternative splicing of a single gene. In this work, novel α-actinin deletion alleles, including ActnΔ233, were generated, which specifically disrupted the transcript encoding the non-muscle α-actinin isoform. Nevertheless, ActnΔ233 homozygous mutant flies were viable and fertile with no obvious defects. By comparing α-actinin protein distribution in wild type and ActnΔ233 mutant animals, it could be concluded that non-muscle α-actinin is the only isoform expressed in young embryos, in the embryonic central nervous system and in various actin-rich structures of the ovarian germline cells. In the ActnΔ233 mutant, α-actinin was detected not only in muscle tissue, but also in embryonic epidermal cells and in certain follicle cell populations in the ovaries. The population of α-actinin protein present in non-muscle cells of the ActnΔ233 mutant is referred to as FC-α-actinin (Follicle Cell). The follicular epithelium in the Drosophila ovary is a well characterised model system for studies on patterning and morphogenesis. Therefore, α-actinin expression, regulation and function in this tissue were further analysed. Examination of the α-actinin localisation pattern revealed that the basal actin fibres of the main body follicle cells underwent an organised remodelling during the final stages of oogenesis. This involved the assembly of a transient adhesion site in the posterior of the cell, in which α-actinin and Enabled (Ena) accumulated. Follicle cells genetically manipulated to lack all α-actinin isoforms failed to remodel their cytoskeleton and translocate Ena to the posterior of the cell, while the actin fibres as such were not affected. Neither was epithelial morphogenesis disrupted. The reorganisation of the basal actin cytoskeleton was also disturbed following ectopic expression of Decapentaplegic (Dpp) or as a result of a heat shock. At late oogenesis, the main body follicle cells express both non-muscle α-actinin and FC-α-actinin, while the dorsal anterior follicle cells express only non-muscle α-actinin. The dorsal anterior cells are patterned by the Dpp and Epidermal growth factor receptor (EGFR) signalling pathways, and they will ultimately secrete the dorsal appendages of the egg. Experiments involving ectopic activation of EGFR and Dpp signalling showed that FC-α-actinin is negatively regulated by combined EGFR and Dpp signalling. Ubiquitous overexpression of the adult muscle-specific α-actinin isoform induced the formation of aberrant actin bundles in migrating follicle cells that did not normally express FC-α-actinin, provided that the EGFR signalling pathway was activated in the cells. Taken together, this work contributes new data to our knowledge of α-actinin function and regulation in Drosophila. The cytoskeletal remodelling shown to depend on α-actinin function provides the first evidence that α-actinin has a role in the organisation of the cytoskeleton in a non-muscle tissue. Furthermore, the cytoskeletal remodelling constitutes a previously undescribed morphogenetic event, which may provide us with a model system for in vivo studies on adhesion dynamics in Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most common connective tissue research in meat science has been conducted on the properties of intramuscular connective tissue (IMCT) in connection with eating quality of meat. From the chemical and physical properties of meat, researchers have concluded that meat from animals younger than physiological maturity is the most tender. In pork and poultry, different challenges have been raised: the structure of cooked meat has weakened. In extreme cases raw porcine M. semimembranosus (SM) and in most turkey M. pectoralis superficialis (PS) can be peeled off in strips along the perimysium which surrounds the muscle fibre bundles (destructured meat), and when cooked, the slices disintegrate. Raw chicken meat is generally very soft and when cooked, it can even be mushy. The overall aim of this thesis was to study the thermal properties of IMCT in porcine SM in order to see if these properties were in association with destructured meat in pork and to characterise IMCT in poultry PS. First a 'baseline' study to characterise the thermal stability of IMCT in light coloured (SM and M. longissimus dorsi in pigs and PS in poultry) and dark coloured (M. infraspinatus in pigs and a combination of M. quadriceps femoris and M. iliotibialis lateralis in poultry) muscles was necessary. Thereafter, it was investigated whether the properties of muscle fibres differed in destructured and normal porcine muscles. Collagen content and also solubility of dark coloured muscles were higher than in light coloured muscles in pork and poultry. Collagen solubility was especially high in chicken muscles, approx. 30 %, in comparison to porcine and turkey muscles. However, collagen content and solubility were similar in destructured and normal porcine SM muscles. Thermal shrinkage of IMCT occurred at approximately 65 °C in pork and poultry. It occurred at lower temperature in light coloured muscles than in dark coloured muscles, although the difference was not always significant. The onset and peak temperatures of thermal shrinkage of IMCT were lower in destructured than in normal SM muscles, when the IMCT from SM muscles exhibiting ten lowest and ten highest ultimate pH values were investigated (onset: 59.4 °C vs. 60.7 °C, peak: 64.9 °C vs. 65.7 °C). As the destructured meat was paler than normal meat, the PSE (pale, soft, exudative) phenomenon could not be ruled out. The muscle fibre cross sectional area (CSA), the number of capillaries per muscle fibre CSA and per fibre and sarcomere length were similar in destructured and normal SM muscles. Drip loss was clearly higher in destructured than in normal SM muscles. In conclusion, collagen content and solubility and thermal shrinkage temperature vary between porcine and poultry muscles. One feature in the IMCT could not be directly associated with weakening of the meat structure. Poultry breast meat is very homogenous within the species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The risk is obvious for soft tissue complications after operative treatment of the Achilles tendon, calcaneal bone or after ankle arthroplasty. Such complications after malleolar fractures are, however, seldom seen. The reason behind these complications is that the soft tissue in this region is tight and does not allow much tension to the wound area after surgery. Furthermore the area of operation may be damaged by swelling after the injury, or can be affected by peripheral vascular disease. While complications in this area are unavoidable, they can be diminished. This study attempts to highlight the possible predisposing factors leading to complications in these operations and on the other hand, to determine the solutions to solve soft tissue problems in this region. The study consists of five papers. The first article is a reprint on the soft tissue reconstruction of 25 patients after their complicated Achilles tendon surgeries were analysed. The second study reviews a series of 126 patients after having undergone an operative treatment of calcaneal bone fractures and analyses the complications and possible reasons behind them. The third part analyses a series of corrections of 35 soft tissue complications after calcaneal fracture operations. The fourth part reviews a series of 7 patients who had undergone complicated ankle arthroplasties. The last article presents a series of post operative lateral defects of the ankle treated with a less frequently used distally based peroneus brevis muscle flap and analyses the results. What can be conducted from these studies is that in general, the results after the correction of even severe soft tissue complications in the ankle region are good. For the small defects around the Achilles tendon, the local flaps are useful, but the larger defects are best treated with a free flap. We found that a long delay from trauma to surgery and a long operating time were predisposing factors that lead to soft tissue complications after operatively treated calcaneal bone fractures. The more severe the injury, the greater the risk for wound complication. Surprisingly, the long-term results after infected calcaneal osteosyntheses were acceptable and the calcaneal bone seems to tolerate chronic infections very well if the soft tissue is reconstructed successfully. Behind the complicated ankle arthroplasties, unexpectedly high number of cases experiencing arteriosclerosis of the lower extremity was found. These complications lead to ankle fusion but can be solved with a free flap if the vascularity is intact or can be reconstructed. For this reason a vascular examination of the lower extremity arteries of the patients going to ankle arthroplasty is strongly recommended. Moreover postoperative lateral malleolar wound infections which typically create lateral ankle defects can successfully be treated with a peroneus brevis muscle flap covered with a free skin graft.