3 resultados para Midline

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developmental dyslexia is a specific reading disability, which is characterised by unexpected difficulty in reading, spelling and writing despite adequate intelligence, education and social environment. It is the most common childhood learning disorder affecting 5-10 % of the population and thus constitutes the largest portion of all learning disorders. It is a persistent developmental failure although it can be improved by compensation. According to the most common theory, the deficit is in phonological processing, which is needed in reading when the words have to be divided into phonemes, or distinct sound elements. This occurs in the lowest level of the hierarchy of the language system and disturbs processes in higher levels, such as understanding the meaning of words. Dyslexia is a complex genetic disorder and previous studies have found nine locations in the genome that associate with it. Altogether four susceptibility genes have been found and this study describes the discovery of the first two of them, DYX1C1 and ROBO1. The first clues were obtained from two Finnish dyslexic families that have chromosomal translocations which disrupt these genes. Genetic analyses supported their role in dyslexia: DYX1C1 associates with dyslexia in the Finnish population and ROBO1 was linked to dyslexia in a large Finnish pedigree. In addition a genome-wide scan in Finnish dyslexic families was performed. This supported the previously detected dyslexia locus on chromosome 2 and revealed a new locus on chromosome 7. Dyslexia is a neurological disorder and the neurobiological function of the susceptibility genes DYX1C1 and ROBO1 are consistent with this. ROBO1 is an axon guidance receptor gene, which is involved in axon guidance across the midline in Drosophila and axonal pathfinding between the two hemispheres via the corpus callosum, as well as neuronal migration in the brain of mice. The translocation and decreased ROBO1 expression in dyslexic individuals indicate that two functional copies of ROBO1 gene are required in reading. DYX1C1 was a new gene without a previously known function. Inhibition of Dyx1c1 expression showed that it is needed in normal brain development in rats. Without Dyx1c1 protein, the neurons in the developing brain will not migrate to their final position in the cortex. These two dyslexia susceptibility genes DYX1C1 and ROBO1 revealed two distinct neurodevelopmental mechanisms of dyslexia, axonal pathfinding and neuronal migration. This study describes the discovery of the genes and our research to clarify their role in developmental dyslexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome that is inherited by an autosomal recessive manner. HLS belongs to the Finnish disease heritage, an entity of rare diseases that are more prevalent in Finland than in other parts of the world. The phenotypic spectrum of the syndrome is wide and it is characterized by several developmental abnormalities, including hydrocephalus and absent midline structures in the brain, abnormal lobation of the lungs, polydactyly as well as micrognathia and other craniofacial anomalies. Polyhydramnios are relatively frequent during pregnancy. HLS can nowadays be effectively identified by ultrasound scan already at the end of the first trimester of pregnancy. One of the main goals in this study was to identify and characterize the gene defect underlying HLS. The defect was found from a previously unknown gene that was named HYLS1. Identification of the gene defect made it possible to confirm the HLS diagnosis genetically, an aspect that provides valuable information for the families in which a fetus is suspected to have HLS. Neuropathological findings of mutation confirmed HLS cases were described for the first time in detail in this study. Also, detailed general pathological findings were described. Since HYLS1 was an unknown gene with no relatives in the known gene families, many functional studies were performed in order to unravel the function of the gene and of the protein it codes for. Studies showed, for example, that the subcellular localization of the HYLS1 protein was different when the normal and the defective forms were compared. In addition, HYLS1 was shown to possess transactivation potential which was significantly diminished in the defective form. According to the results of this study it can be stated that HYLS1 most likely participates in transcriptional regulation and also in the regulation of cholesterol metabolism and that the function of HYLS1 is critical for normal fetal development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this dissertation was to study the applicability of minced autologous fascia graft for injection laryngoplasty of unilateral vocal fold paralysis (UVFP). Permanence of augmentation and host versus graft tissue reactions were of special interest. The topic deals with phonosurgery, which is a subdivision of the Ear, Nose and Throat-speciality of medicine. UVFP results from an injury to the recurrent or the vagal nerve. The main symptom is a hoarse and weak voice. Surgery is warranted for patients in whom spontaneous reinnervation and a course of voice therapy fails to improve the voice. Injection laryngoplasty is a widespread surgical technique which aims to restore glottic closure by augmenting the atrophied vocal muscle, and also by turning the paralyzed vocal fold towards midline. Currently, there exists a great diversity of synthetic, xenologous, homologous, and autologous substances available for injection. An autologous graft is perfect in terms of biocompatibility. Free fascia grafts have been successfully used in the head and neck surgery for decades, but fascia had not been previously applied into the vocal fold. The fascia is harvested from the lateral thigh under local anesthesia and minced into paste by scissors. Injection of the vocal fold is performed in laryngomicroscopy under general anesthesia. Three series of clinical trials of injection laryngoplasty with autologous fascia (ILAF) for patients with UVFP were conducted at the Department of Otorhinolaryngology of the Helsinki University Central Hospital. The follow-up ranged from a few months to ten years. The aim was to document the vocal results and possible morbidity related to graft harvesting and vocal fold injection. To address the tissue reactions and the degree of reabsoprtion of the graft, an animal study with a follow-up ranging from 3 days to 12 months was performed at the National Laboratory Animal Center, University of Kuopio. Harvesting of the graft and injection was met with minor morbidity. Histological analysis of the vocal fold tissue showed that fascia was well tolerated. Although some resorption or compaction of the graft during the first months is evident, graft volume is maintained well. When injected deep and laterally into the vocalis muscle, the fascia graft allows normal vibration of the vocal fold mucosa to occur during phonation. Improvement of voice quality was seen in all series by multiple objective parameters of voice evaluation. However, the vocal results were poor in cases where the nerve trauma was severe, such as UVFP after chest surgery. ILAF is most suitable for correction of mild to moderate glottic gaps related to less severe nerve damage. Our results indicate that autologous fascia is a feasible and safe new injection material with good and stable vocal results. It offers a practical solution for surgeons who treat this complex issue.