5 resultados para Microwave ceramics

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first quarter of the 20th century witnessed a rebirth of cosmology, study of our Universe, as a field of scientific research with testable theoretical predictions. The amount of available cosmological data grew slowly from a few galaxy redshift measurements, rotation curves and local light element abundances into the first detection of the cos- mic microwave background (CMB) in 1965. By the turn of the century the amount of data exploded incorporating fields of new, exciting cosmological observables such as lensing, Lyman alpha forests, type Ia supernovae, baryon acoustic oscillations and Sunyaev-Zeldovich regions to name a few. -- CMB, the ubiquitous afterglow of the Big Bang, carries with it a wealth of cosmological information. Unfortunately, that information, delicate intensity variations, turned out hard to extract from the overall temperature. Since the first detection, it took nearly 30 years before first evidence of fluctuations on the microwave background were presented. At present, high precision cosmology is solidly based on precise measurements of the CMB anisotropy making it possible to pinpoint cosmological parameters to one-in-a-hundred level precision. The progress has made it possible to build and test models of the Universe that differ in the way the cosmos evolved some fraction of the first second since the Big Bang. -- This thesis is concerned with the high precision CMB observations. It presents three selected topics along a CMB experiment analysis pipeline. Map-making and residual noise estimation are studied using an approach called destriping. The studied approximate methods are invaluable for the large datasets of any modern CMB experiment and will undoubtedly become even more so when the next generation of experiments reach the operational stage. -- We begin with a brief overview of cosmological observations and describe the general relativistic perturbation theory. Next we discuss the map-making problem of a CMB experiment and the characterization of residual noise present in the maps. In the end, the use of modern cosmological data is presented in the study of an extended cosmological model, the correlated isocurvature fluctuations. Current available data is shown to indicate that future experiments are certainly needed to provide more information on these extra degrees of freedom. Any solid evidence of the isocurvature modes would have a considerable impact due to their power in model selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.