1 resultado para Metacarpophalangeal

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractures and arthritic joint destruction are common in the hand. A reliable and stable fracture fixation can be achieved by metal implants, which however, become unnecessary or even harmful after consolidation. The silicone implant arthroplasty is the current method of choice for reconstruction of metacarpophalangeal joints in rheumatoid patients. However, the outcome tends to worsen with long-term follow-up and implant-related complications become frequent. To address these problems, bioabsorbable implants were designed for the hand area. Aims of the studies were: 1) to evaluate the biomechanical stabilities provided by self- reinforced (SR) bioabsorbable implants in a transverse and an oblique osteotomy of small tubular bones and to compare them with those provided by metal implants; 2) to evaluate the SR poly-L/DL-lactide 70/30 plate for osteosynthesis in a proof-of-principle type of experiment in three cases of hand injuries; and 3) to evaluate the poly-L/D-lactide (PLA) 96/4 joint scaffold, a composite joint implant with a supplementary intramedullary Polyactive® stem and Swanson silicone implant in an experimental small joint arthroplasty model. Methods used were: 1) 112 fresh frozen human cadaver and 160 pig metacarpal bones osteotomised transversally or obliquely, respectively, and tested ex vivo in three point bending and in torsion; 2) three patient cases of complex hand injuries; and 3) the fifth metacarpophalangeal joints reconstructed in 18 skeletally-mature minipigs and studied radiologically and histologically. The initial fixation stabilities provided by bioabsorbable implants in the tubular bones of the hand were comparable with currently-employed metal fixation techniques, and were sufficient for fracture stabilisation in three preliminary cases in the hand. However, in torsion the stabilities provided by bioabsorbable implants were lower than that provided by metal counterparts. The bioabsorbable plate enhanced the bending stability for the bioabsorbable fixation construct. PLA 96/4 joint scaffolds demonstrated good biocompatibility and enabled fibrous tissue in-growth in situ. After scaffold degradation, a functional, stable pseudarthrosis with dense fibrous connective tissue was formed. However, the supplementary Polyactive® stem caused a deleterious tissue reaction and therefore the stem can not be applied to the composite joint implant. The bioabsorbable implants have potential for use in clinical hand surgery, but have to await validation in clinical patient series and controlled trials.