9 resultados para Mediator Release
em Helda - Digital Repository of University of Helsinki
Resumo:
Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.
Resumo:
Thrombin is a multifunctional protease, which has a central role in the development and progression of coronary atherosclerotic lesions and it is a possible mediator of myocardial ischemia-reperfusion injury. Its generation and procoagulant activity are greatly upregulated during cardiopulmonary bypass (CPB). On the other hand, activated protein C, a physiologic anticoagulant that is activated by thrombomodulin-bound thrombin, has been beneficial in various models of ischemia-reperfusion. Therefore, our aim in this study was to test whether thrombin generation or protein C activation during coronary artery bypass grafting (CABG) associate with postoperative myocardial damage or hemodynamic changes. To further investigate the regulation of thrombin during CABG, we tested whether preoperative thrombophilic factors associate with increased CPB-related generation of thrombin or its procoagulant activity. We also measured the anticoagulant effects of heparin during CPB with a novel coagulation test, prothrombinase-induced clotting time (PiCT), and compared the performance of this test with the present standard of laboratory-based anticoagulation monitoring. One hundred patients undergoing elective on-pump CABG were studied prospectively. A progressive increase in markers of thrombin generation (F1+2), fibrinolysis (D-dimer), and fibrin formation (soluble fibrin monomer complexes) was observed during CPB, which was further distinctly propagated by reperfusion after myocardial ischemia, and continued to peak after the neutralization of heparin with protamine. Thrombin generation during reperfusion after CABG associated with postoperative myocardial damage and increased pulmonary vascular resistance. Activated protein C levels increased only slightly during CPB before the release of the aortic clamp, but reperfusion and more significantly heparin neutralization caused a massive increase in activated protein C levels. Protein C activation was clearly delayed in relation to both thrombin generation and fibrin formation. Even though activated protein C associated dynamically with postoperative hemodynamic performance, it did not associate with postoperative myocardial damage. Preoperative thrombophilic variables did not associate with perioperative thrombin generation or its procoagulant activity. Therefore, our results do not favor routine thrombophilia screening before CABG. There was poor agreement between PiCT and other measurements of heparin effects in the setting of CPB. However, lower heparin levels during CPB associated with inferior thrombin control and high heparin levels during CPB associated with fewer perioperative transfusions of blood products. Overall, our results suggest that hypercoagulation after CABG, especially during reperfusion, might be clinically important.