4 resultados para Maximum modulus princple
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis reports on investigations into the influence of heat treatment on the manufacturing of oat flakes. Sources of variation in the oat flake quality are reviewed, including the whole chain from the farm to the consumer. The most important quality parameters of oat flakes are the absence of lipid hydrolysing enzymes, specific weight, thickness, breakage (fines), water absorption. Flavour, colour and pasting properties are also important, but were not included in the experimental part of this study. Of particular interest was the role of heat processing. The first possible heat treatment may occur already during grain drying, which in Finland generally happens at the farm. At the mill, oats are often kilned to stabilise the product by inactivating lipid hydrolysing enzymes. Almost invariably steaming is used during flaking, to soften the groats and reduce flake breakage. This thesis presents the use of a material science approach to investigating a complex system, typical of food processes. A combination of fundamental and empirical rheological measurements was used together with a laboratory scale process to simulate industrial processing. The results were verified by means of industrial trials. Industrially produced flakes at three thickness levels (nominally 0.75, 0.85 and 0.90 mm) were produced from kilned and unkilned oat groats, and the flake strength was measured at different moisture contents. Kilning was not found to significantly affect the force required to puncture a flake with a 2mm cylindrical probe, which was taken as a measure of flake strength. To further investigate how heat processing contributes to flake quality, dynamic mechanical analysis was used to characterise the effect of heat on the mechanical properties of oats. A marked stiffening of the groat, of up to about 50% increase in storage modulus, was observed during first heating at around 36 to 57°C. This was also observed in tablets prepared from ground groats and extracted oat starch. This stiffening was thus attributed to increased adhesion between starch granules. Groats were steamed in a laboratory steamer and were tempered in an oven at 80 110°C for 30 90 min. The maximum force required to compress the steamed groats to 50% strain increased from 50.7 N to 57.5 N as the tempering temperature was increased from 80 to 110°C. Tempering conditions also affected water absorption. A significantly higher moisture content was observed for kilned (18.9%) compared to unkilned (17.1%) groats, but otherwise had no effect on groat height, maximum force or final force after a 5 s relaxation time. Flakes were produced from the tempered groats using a laboratory flaking machine, using a roll gap of 0.4 mm. Apart from specific weight, flake properties were not influenced by kilning. Tempering conditions however had significant effects on the specific weight, thickness and water absorption of the flakes, as well as on the amount of fine material (<2 mm) produced during flaking. Flake strength correlated significantly with groat strength and flake thickness. Trial flaking at a commercial mill confirmed that groat temperature after tempering influenced water absorption. Variation in flake strength was observed , but at the groat temperatures required to inactivate lipase, it was rather small. Cold flaking of groats resulted in soft, floury flakes. The results presented in this thesis suggest that heating increased the adhesion between starch granules. This resulted in an increase in the stiffness and brittleness of the groat. Brittle fracture, rather than plastic flow, during flaking could result in flaws and cracks in the flake. These would be expected to increase water absorption. This was indeed observed as tempering temperature increased. Industrial trials, conducted with different groat temperatures, confirmed the main findings of the laboratory experiments. The approach used in the present study allowed the systematic study of the effect of interacting process parameters on product quality. There have been few scientific studies of oat processing, and these results can be used to understand the complex effects of process variables on flake quality. They also offer an insight into what happens as the oat groat is deformed into a flake.
Resumo:
The objective of this paper is to improve option risk monitoring by examining the information content of implied volatility and by introducing the calculation of a single-sum expected risk exposure similar to the Value-at-Risk. The figure is calculated in two steps. First, there is a need to estimate the value of a portfolio of options for a number of different market scenarios, while the second step is to summarize the information content of the estimated scenarios into a single-sum risk measure. This involves the use of probability theory and return distributions, which confronts the user with the problems of non-normality in the return distribution of the underlying asset. Here the hyperbolic distribution is used to describe one alternative for dealing with heavy tails. Results indicate that the information content of implied volatility is useful when predicting future large returns in the underlying asset. Further, the hyperbolic distribution provides a good fit to historical returns enabling a more accurate definition of statistical intervals and extreme events.