2 resultados para Maxima and minima

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Postglacial climate changes and vegetation responses were studied using a combination of biological and physical indicators preserved in lake sediments. Low-frequency trends, high-frequency events and rapid shifts in temperature and moisture balance were probed using pollen-based quantitative temperature reconstructions and oxygen-isotopes from authigenic carbonate and aquatic cellulose, respectively. Pollen and plant macrofossils were employed to shed light on the presence and response rates of plant populations in response to climate changes, particularly focusing on common boreal and temperate tree species. Additional geochemical and isotopic tracers facilitated the interpretation of pollen- and oxygen-isotope data. The results show that the common boreal trees were present in the Baltic region (~55°N) during the Lateglacial, which contrasts with the traditional view of species refuge locations in the south-European peninsulas during the glacial/interglacial cycles. The findings of this work are in agreement with recent paleoecological and genetic evidence suggesting that scattered populations of tree species persisted at higher latitudes, and that these taxa were likely limited to boreal trees. Moreover, the results demonstrate that stepwise changes in plant communities took place in concert with major climate fluctuations of the glacial/interglacial transition. Postglacial climate trends in northern Europe were characterized by rise, maxima and fall in temperatures and related changes in moisture balance. Following the deglaciation of the Northern Hemisphere and the early Holocene reorganization of the ice-ocean-atmosphere system, the long-term temperature trends followed gradually decreasing summer insolation. The early Holocene (~11,700-8000 cal yr BP) was overall cool, moist and oceanic, although the earliest Holocene effective humidity may have been low particularly in the eastern part of northern Europe. The gradual warming trend was interrupted by a cold event ~8200 cal yr BP. The maximum temperatures, ~1.5-3.0°C above modern values, were attained ~8000-4000 cal yr BP. This mid-Holocene peak warmth was coupled with low lake levels, low effective humidity and summertime drought. The late Holocene (~4000 cal yr BP-present) was characterized by gradually decreasing temperatures, higher lake levels and higher effective humidity. Moreover, the gradual trends of the late Holocene were probably superimposed by higher-frequency variability. The spatial variability of the Holocene temperature and moisture balance patterns were tentatively attributed to the differing heat capacities of continents and oceans, changes in atmospheric circulation modes and position of sites and subregions with respect to large water bodies and topographic barriers. The combination of physical and biological proxy archives is a pivotal aspect of this work, because non-climatic factors, such as postglacial migration, disturbances and competitive interactions, can influence reshuffling of vegetation and hence, pollen-based climate reconstructions. The oxygen-isotope records and other physical proxies presented in this work manifest that postglacial climate changes were the main driver of the establishment and expansion of temperate and boreal tree populations, and hence, large-scale and long-term vegetation patterns were in dynamic equilibrium with climate. A notable exception to this pattern may be the postglacial invasion of Norway spruce and the related suppression of mid-Holocene temperate forest. This salient step in north-European vegetation history, the development of the modern boreal ecosystem, cannot be unambiguously explained by current evidence of postglacial climate changes. The results of this work highlight that plant populations, including long-lived trees, may be able to respond strikingly rapidly to changes in climate. Moreover, interannual and seasonal variation and extreme events can exert an important influence on vegetation reshuffling. Importantly, the studies imply that the presence of diffuse refuge populations or local stands among the prevailing vegetation may have provided the means for extraordinarily rapid vegetation responses. Hence, if scattered populations are not provided and tree populations are to migrate long distances, their capacity to keep up with predicted rates of future climate change may be lower than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present thesis, questions of spectral tuning, the relation of spectral and thermal properties of visual pigments, and evolutionary adaptation to different light environments were addressed using a group of small crustaceans of the genus Mysis as a model. The study was based on microspectrophotometric measurements of visual pigment absorbance spectra, electrophysiological measurements of spectral sensitivities of dark-adapted eyes, and sequencing of the opsin gene retrieved through PCR. The spectral properties were related to the spectral transmission of the respective light environments, as well as to the phylogentic histories of the species. The photoactivation energy (Ea) was estimated from temperature effects on spectral sensitivity in the long-wavelength range, and calculations were made for optimal quantum catch and optimal signal-to-noise ratio in the different light environments. The opsin amino acid sequences of spectrally characterized individuals were compared to find candidate residues for spectral tuning. The general purpose was to clarify to what extent and on what time scale adaptive evolution has driven the functional properties of (mysid) visual pigments towards optimal performance in different light environments. An ultimate goal was to find the molecular mechanisms underlying the spectral tuning and to understand the balance between evolutionary adaptation and molecular constraints. The totally consistent segregation of absorption maxima (λmax) into (shorter-wavelength) marine and (longer-wavelength) freshwater populations suggests that truly adaptive evolution is involved in tuning the visual pigment for optimal performance, driven by selection for high absolute visual sensitivity. On the other hand, the similarity in λmax and opsin sequence between several populations of freshwater M. relicta in spectrally different lakes highlights the limits to adaptation set by evolutionary history and time. A strong inverse correlation between Ea and λmax was found among all visual pigments studied in these respects, including those of M. relicta and 10 species of vertebrate pigments, and this was used to infer thermal noise. The conceptual signal-to-noise ratios thus calculated for pigments with different λmax in the Baltic Sea and Lake Pääjärvi light environments supported the notion that spectral adaptation works towards maximizing the signal-to-noise ratio rather than quantum catch as such. Judged by the shape of absorbance spectra, the visual pigments of all populations of M. relicta and M. salemaai used exclusively the A2 chromophore (3, 4-dehydroretinal). A comparison of amino acid substitutions between M. relicta and M. salemaai indicated that mysid shrimps have a small number of readily available tuning sites to shift between a shorter - and a longer -wavelength opsin. However, phylogenetic history seems to have prevented marine M. relicta from converting back to the (presumably) ancestral opsin form, and thus the more recent reinvention of marine spectral sensitivity has been accomplished by some other novel mechanism, yet to be found