2 resultados para Maine Libraries
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis describes current and past n-in-one methods and presents three early experimental studies using mass spectrometry and the triple quadrupole instrument on the application of n-in-one in drug discovery. N-in-one strategy pools and mix samples in drug discovery prior to measurement or analysis. This allows the most promising compounds to be rapidly identified and then analysed. Nowadays properties of drugs are characterised earlier and in parallel with pharmacological efficacy. Studies presented here use in vitro methods as caco-2 cells and immobilized artificial membrane chromatography for drug absorption and lipophilicity measurements. The high sensitivity and selectivity of liquid chromatography mass spectrometry are especially important for new analytical methods using n-in-one. In the first study, the fragmentation patterns of ten nitrophenoxy benzoate compounds, serial homology, were characterised and the presence of the compounds was determined in a combinatorial library. The influence of one or two nitro substituents and the alkyl chain length of methyl to pentyl on collision-induced fragmentation was studied, and interesting structurefragmentation relationships were detected. Two nitro group compounds increased fragmentation compared to one nitro group, whereas less fragmentation was noted in molecules with a longer alkyl chain. The most abundant product ions were nitrophenoxy ions, which were also tested in the precursor ion screening of the combinatorial library. In the second study, the immobilized artificial membrane chromatographic method was transferred from ultraviolet detection to mass spectrometric analysis and a new method was developed. Mass spectra were scanned and the chromatographic retention of compounds was analysed using extract ion chromatograms. When changing detectors and buffers and including n-in-one in the method, the results showed good correlation. Finally, the results demonstrated that mass spectrometric detection with gradient elution can provide a rapid and convenient n-in-one method for ranking the lipophilic properties of several structurally diverse compounds simultaneously. In the final study, a new method was developed for caco-2 samples. Compounds were separated by liquid chromatography and quantified by selected reaction monitoring using mass spectrometry. This method was used for caco-2 samples, where absorption of ten chemically and physiologically different compounds was screened using both single and nin- one approaches. These three studies used mass spectrometry for compound identification, method transfer and quantitation in the area of mixture analysis. Different mass spectrometric scanning modes for the triple quadrupole instrument were used in each method. Early drug discovery with n-in-one is area where mass spectrometric analysis, its possibilities and proper use, is especially important.
Resumo:
The first line medication for mild to moderate Alzheimer s disease (AD) is based on cholinesterase inhibitors which prolong the effect of the neurotransmitter acetylcholine in cholinergic nerve synapses which relieves the symptoms of the disease. Implications of cholinesterases involvement in disease modifying processes has increased interest in this research area. The drug discovery and development process is a long and expensive process that takes on average 13.5 years and costs approximately 0.9 billion US dollars. Drug attritions in the clinical phases are common due to several reasons, e.g., poor bioavailability of compounds leading to low efficacy or toxic effects. Thus, improvements in the early drug discovery process are needed to create highly potent non-toxic compounds with predicted drug-like properties. Nature has been a good source for the discovery of new medicines accounting for around half of the new drugs approved to market during the last three decades. These compounds are direct isolates from the nature, their synthetic derivatives or natural mimics. Synthetic chemistry is an alternative way to produce compounds for drug discovery purposes. Both sources have pros and cons. The screening of new bioactive compounds in vitro is based on assaying compound libraries against targets. Assay set-up has to be adapted and validated for each screen to produce high quality data. Depending on the size of the library, miniaturization and automation are often requirements to reduce solvent and compound amounts and fasten the process. In this contribution, natural extract, natural pure compound and synthetic compound libraries were assessed as sources for new bioactive compounds. The libraries were screened primarily for acetylcholinesterase inhibitory effect and secondarily for butyrylcholinesterase inhibitory effect. To be able to screen the libraries, two assays were evaluated as screening tools and adapted to be compatible with special features of each library. The assays were validated to create high quality data. Cholinesterase inhibitors with various potencies and selectivity were found in natural product and synthetic compound libraries which indicates that the two sources complement each other. It is acknowledged that natural compounds differ structurally from compounds in synthetic compound libraries which further support the view of complementation especially if a high diversity of structures is the criterion for selection of compounds in a library.