2 resultados para Magma
em Helda - Digital Repository of University of Helsinki
Resumo:
This study brings new insights into the magmatic evolution of natural F-enriched peraluminous granitic systems. The Artjärvi, Sääskjärvi and Kymi granite stocks within the 1.64 Ga Wiborg rapakivi granite batholith have been investigated by petrographic, geochemical, experimental and melt inclusion methods. These stocks represent late-stage leucocratic and weakly peraluminous intrusive phases typical of rapakivi granites worldwide. The Artjärvi and Sääskjärvi stocks are multiphase intrusions in which the most evolved phase is topaz granite. The Kymi stock contains topaz throughout and has a well-developed zoned structure, from the rim to the center: stockscheider pegmatite equigranular topaz granite porphyritic topaz granite. Geochemically the topaz granites are enriched in F, Li, Be, Ga, Rb, Sn and Nb and depleted in Mg, Fe, Ti, Ba, Sr, Zr and Eu. The anomalous geochemistry and mineralogy of the topaz granites are essentially magmatic in origin; postmagmatic reactions have only slightly modified the compositions. The Kymi equigranular topaz granite shows the most evolved character, and the topaz granites at Artjärvi and Sääskjärvi resemble the less evolved porphyritic topaz granite of the Kymi stock. Stockscheiders are found at the roof contacts of the Artjärvi and Kymi stocks. The stockscheider at Artjärvi is composed of biotite-rich schlieren and pegmatite layers parallel to the contact. The schlieren layering is considered to have formed by velocity-gradient sorting mechanism parallel to the flow, which led to the accumulation of mafic minerals along the upper contact of the topaz granite. Cooling and contraction of the topaz granite formed fractures parallel to the roof contact and residual pegmatite magmas were injected along the fractures and formed the pegmatite layers. The zoned structure of the Kymi stock is the result of intrusion of highly evolved residual melt from deeper parts of the magma chamber along the fractured contact between the porphyritic granite crystal mush and country rock. The equigranular topaz granite and marginal pegmatite (stockscheider) crystallized from this evolved melt. Phase relations of the Kymi equigranular topaz granite have been investigated utilizing crystallization experiments at 100 to 500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5 - 3.0 wt % to facilitate crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt % F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Overall, the saturation of fluorite and topaz follows the reaction: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass is 1.89 to 0.80 (average 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. In order to study the magmatic evolution of the Kymi stock, crystallized melt inclusions in quartz and topaz grains in the porphyritic and the equigranular topaz granites and the marginal pegmatite were rehomogenized and analyzed. The homogenization conditions for the melt inclusions from the granites were 700 °C, 300 MPa, and 24 h, and for melt inclusions from the pegmatite, 700 °C, 100 MPa, and 24/96 h. The majority of the melt inclusions is chemically similar to the bulk rocks (excluding H2O content), but a few melt inclusions in the equigranular granite show clearly higher F and low K2O contents (on average 11.6 wt % F, 0.65 wt % K2O). The melt inclusion compositions indicate coexistence of two melt fractions, a prevailing peraluminous and a very volatile-rich, possibly peralkaline. Combined petrological, experimental and melt inclusion studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt %. The early crystallization of biotite and the presence of muscovite in crystallization experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the equigranular granite, indicating that crystallization pressure may have been lower than 200 MPa for the granite.
Resumo:
This study provides insights into the composition and origin of ferropicrite dikes (FeOtot = 13 17 wt. %; MgO = 13 19 wt. %) and associated meimechite, picrite, picrobasalt, and basalt dikes found at Vestfjella, western Dronning Maud Land, Antarctica. The dikes crosscut Jurassic Karoo continental flood basalts (CFB) that were emplaced during the early stages of the breakup of the Gondwana supercontinent ~180 Ma ago. Selected samples (31 overall from at least eleven dikes) were analyzed for their mineral chemical, major element, trace element, and Sr, Nd, Pb, and Os isotopic compositions. The studied samples can be divided into two geochemically distinct types: (1) The depleted type (24 samples from at least nine dikes) is relatively depleted in the most incompatible elements and exhibits isotopic characteristics (e.g., initial εNd of +4.8 to +8.3 and initial 187Os/188Os of 0.1256 0.1277 at 180 Ma) similar to those of mid-ocean ridge basalts (MORB); (2) The enriched type (7 samples from at least two dikes) exhibits relatively enriched incompatible element and isotopic characteristics (e.g., initial εNd of +1.8 to +3.6 and initial 187Os/188Os of 0.1401 0.1425 at 180 Ma) similar to those of oceanic island basalts. Both magma types have escaped significant contamination by the continental crust. The depleted type is related to the main phase of Karoo magmatism and originated as highly magnesian (MgO up to 25 wt. %) partial melts at high temperatures (mantle potential temperature >1600 °C) and pressures (~5 6 GPa) from a sublithospheric, water-bearing, depleted peridotite mantle source. The enriched type sampled pyroxene-bearing heterogeneities that can be traced down to either recycled oceanic crust or melt-metasomatized portions of the sublithospheric or lithospheric mantle. The source of the depleted type represents a sublithospheric end-member source for many Karoo lavas and has subsequently been sampled by the MORBs of the Indian Ocean. These observations, together with the purported high temperatures, indicate that the Karoo CFBs were formed in an extensive melting episode caused mainly by internal heating of the upper mantle beneath the Gondwana supercontinent. My research supports the view that ferropicritic melts can be generated in several ways: the relative Fe-enrichment of mantle partial melts is most readily achieved by (1) relatively low degree of partial melting, (2) high pressure of partial melting, and (3) melting of enriched source components (e.g., pyroxenite and metasomatized peridotite). Ferropicritic whole-rock compositions could also result from accumulation, secondary alteration, and fractional crystallization, however, and caution is required when addressing the parental magma composition.