43 resultados para MATRIX METALLOPROTEINASE
em Helda - Digital Repository of University of Helsinki
Resumo:
Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.
Resumo:
Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.
Resumo:
Premature delivery is a major cause of neonatal morbidity and mortality. The incidence of premature deliveries has increased around the world. In Finland 5.3%, or about 3,000 children per year are born prematurely, before 37 weeks of gestation. The corresponding figure in the United States is about 13%. The morbidity and mortality are highest among infants delivered before 32 weeks of gestation - about 600 children each year in Finland. Approximately 70% of premature deliveries are unexplained. Preterm delivery can be caused by an asympto-matic infection between uterus and the fetal membranes, such can begin already in early pregnancy. It is difficult to predict preterm delivery, and many patients are therefore unnecessarily admitted to hospital for observation and exposed to medical treatments. On the other hand, the high risk women should be identified early for the best treatment of the mother and preterm infant. --- In the prospective study conducted at the Department of Obstetric and Gynecology, Helsinki University Central Hospital two biochemical inflammation related markers were measured in the lower genital tract fluids of asymp-tomatic women in early and mid pregnancy in an order to see whether these markers could identify women with an increased risk of preterm delivery. These biomarkers were phosphorylated insulin-like growth factor binding protein-1 (phIGFBP-1) and matrix metalloproteinase-8 (MMP-8). The study involved 5180 asymptomatic pregnant women, examined during the first and second ultrasound screening visits. The study samples were taken from the vagina and cervicix. In addition, 246 symptomatic women were studied (pregnancy weeks 22 – 34). The study showed that increased phIGFBP-1 concentration in cervical canal fluid in early pregnancy increased the risk for preterm delivery. The risk for very premature birth (before 32 weeks of gestation) was nearly four-fold. Low MMP-8 concentration in mid pregnancy increased the risk of subsequent premature preterm rupture of fetal membranes (PPROM). Significantly high MMP-8 concentrations in the cervical fluid increased the risk for prema-ture delivery initiated by preterm labour with intact membranes. Among women with preterm contractions the shortened cervical length measured by ultrasound and elevated cervical fluid phIGFBP-1 both predicted premature delivery. In summary, because of the relatively low sensitivity of cervical fluid phIGFBP-1 this biomarker is not suitable for routine screening, but provides an additional tool in assessing the risk of preterm delivery. Cervical fluid MMP-8 is not useful in early or mid pregnancy in predicting premature delivery because of its dual role. Further studies on the role of MMP-8 are therefore needed. Our study confirms that phIGFBP-1 testing is useful in predicting pre-term delivery.
Resumo:
Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.
Resumo:
Cardiovascular diseases, which presently are considered inflammatory diseases, affect millions of people worldwide. Chronic infections may contribute to the systemic inflammation suggested to increase the risk for cardiovascular diseases. Such chronic infections are periodontitis and Chlamydia pneumoniae infection. They are highly prevalent as approximately 10% of adult population and 30% of people over 50 years old are affected by severe periodontitis and 70-80% of elderly people are seropositive for C. pneumoniae. Our general aim was to investigate the role of infection and inflammation in atherosclerosis both in animal and human studies. We aimed to determine how the two pathogens alter the atherosclerosis-associated parameters, and how they affect the liver inflammation and lipid composition. Furthermore, we evaluated the association between matrix metalloproteinase-8 (MMP-8), a proteinase playing a major role in inflammation, and the future cardiovascular diseases (CVD) events in a population-based cohort. For the animal experiments, we used atherosclerosis-susceptible apolipoprotein E deficient (apoE-/-) mice. They were kept in germ free conditions and fed with a normal chow diet. The bacteria were administered either intravenously (A. actinomycetemcomitans) or intranasally (C. pneumoniae). Several factors were determined from serum as well as from aortic and hepatic tissues. We also determined how cholesterol efflux, a major event in the removal of excess cholesterol from the tissues, and endothelial function were affected by these pathogens. In the human study, serum MMP-8 and its tissue inhibitor (TIMP-1) concentrations were measured and their associations during the follow-up time of 10 years with CVD events were determined. An infection with A. actinomycetemcomitans increased concentrations of inflammatory mediators, MMP production, and cholesterol deposit in macrophages, decreased lipoprotein particle size, and induced liver inflammation. C. pneumoniae infection also elicited an inflammatory response and endothelial dysfunction, as well as induced liver inflammation, microvesicular appearance and altered fatty acid profile. In the population-based cohort, men with increased serum MMP-8 concentration together with subclinical atherosclerosis (carotid artery intima media thickness > 1mm) had a three-fold increased risk for CVD death during the follow-up. The results show that infections with A. actinomycetemcomitans and C. pneumoniae induce proatherogenic changes, as well as affect the liver. These data therefore support the concept that common infections have systemic effects and could be considered as cardiovascular risk factors. Furthermore, our data indicate that, as an independent predictor of fatal CVD event, serum MMP-8 could have a clinical significance in diagnosing cardiovascular diseases.
Resumo:
The aim of this thesis was to compare the degradation of human oral epithelial proteins by proteinases of different Candida yeast species. We focused on proteins associated with Candida invasion in the cell-to-cell junction, the basement membrane zone, the extracellular matrix, and local tissue inflammatory regulators. Another main objective was to evaluate the effect of the yeast/hyphal transition and pH on the degradative capability of Candida. The enzymatic activity of the Candida proteinases was verified by gelatin zymography. Laminins-332 (Lm-322) and -511(Lm-511) produced by human oral keratinocytes were gathered from the growth media, and E-cadherin (E-Cad) was isolated from the cell membrane of the keratinocytes by immunoprecipitation. The proteins were incubated with Candida cells and cell-free fractions, and degradation was detected by fluorography. Fibronectin degradation was visualised by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Matrix metalloproteinase-9 (MMP-9) activation and tissue inhibitor of metalloproteinase-1 (TIMP-1) fragmentation was detected by using the Western blot and enhanced chemoluminescence (ECL) techniques. Residual activity of TIMP-1 was evaluated by a casein degradation assay. A fluorimetric assay was used to detect and compare Candida proteinase activities with MMP-9. These studies showed that the ability of the different Candida yeast species to degrade human Lm-332, fibronectin, and E-Cad vary from strain to strain and that this degradation is pH-dependent. This indicates that local acidic pH in tissue may play a role in tissue destruction by activating Candida proteinases and aid invasion of Candida into deeper tissue. A potential correlation exists between the morphological form of the yeasts and the degradative ability; the C. albicans yeast form seems to be related to superficial infections, and hyphal forms can apparently invade deeper tissues between the epithelial cells by degradation of E-Cad. Basement membrane degradation is possible, especially in the junctional epithelium, which contains only Lm-332 as a structural component. Local tissue host inflammatory mediators, such as MMP-9, were activated, and TIMP-1 was degraded by certain Candida species, thus indicating the possibility of a weakened host tissue defence mechanism in vivo.
Resumo:
Epilysin (MMP-28) is the most recently identified member of the matrix metalloproteinase (MMP) family of extracellular proteases. Together these enzymes are capable of degrading almost all components of the extracellular matrix (ECM) and are thus involved in important biological processes such as development, wound healing and immune functions, but also in pathological processes such as tumor invasion, metastasis and arthritis. MMPs do not act solely by degrading the ECM. They also regulate cell behavior by releasing growth factors and biologically active peptides from the ECM, by modulating cell surface receptors and adhesion molecules and by regulating the activity of many important mediators in inflammatory pathways. The aim of this study was to define the unique role of epilysin within the MMP-family, to elucidate how and when it is expressed and how its catalytic activity is regulated. To gain information on its essential functions and substrates, the specific aim was to characterize how epilysin affects the phenotype of epithelial cells, where it is biologically expressed. During the course of the study we found that the epilysin promoter contains a well conserved GT-box that is essential for the basic expression of this gene. Transcription factors Sp1 and Sp3 bind this sequence and could hence regulate both the basic and cell type and differentiation stage specific expression of epilysin. We cloned mouse epilysin cDNA and found that epilysin is well conserved between human and mouse genomes and that epilysin is glycosylated and activated by furin. Similarly to in human tissues, epilysin is normally expressed in a number of mouse tissues. The expression pattern differs from most other MMPs, which are expressed only in response to injury or inflammation and in pathological processes like cancer. These findings implicate that epilysin could be involved in tissue homeostasis, perhaps fine-tuning the phenotype of epithelial cells according to signals from the ECM. In view of these results, it was unexpected to find that epilysin can induce a stable epithelial to mesenchymal transition (EMT) when overexpressed in epithelial lung carcinoma cells. Transforming growth factor b (TGF-b) was recognized as a crucial mediator of this process, which was characterized by the loss of E-cadherin mediated cell-cell adhesion, elevated expression of gelatinase B and MT1-MMP and increased cell migration and invasion into collagen I gels. We also observed that epilysin is bound to the surface of epithelial cells and that this interaction is lost upon cell transformation and is susceptible to degradation by membrane type-1-MMP (MT1-MMP). The wide expression of epilysin under physiological conditions implicates that its effects on epithelial cell phenotype in vivo are not as dramatic as seen in our in vitro cell system. Nevertheless, current results indicate a possible interaction between epilysin and TGF-b also under physiological circumstances, where epilysin activity may not induce EMT but, instead, trigger less permanent changes in TGF-b signaling and cell motility. Epilysin may thus play an important role in TGF-b regulated events such as wound healing and inflammation, processes where involvement of epilysin has been indicated.
Resumo:
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and, occasionally, also causes systemic infection. During systemic infection an important characteristic of Salmonella is its ability to survive and replicate within macrophages. The outer membrane protease PgtE of S. enterica is a member of the omptin family of outer membrane aspartate proteases, which are beta-barrel proteins with five surface-exposed loops. The main goals of this study were to characterize biological substrates and pathogenesis-associated functions of PgtE and to determine the conditions where PgtE is fully active. In this study we found that PgtE requires rough lipopolysaccharide (LPS) to be functional but is sterically inhibited by the long O-antigen side chain in smooth LPS. Salmonella isolates normally are smooth with a long oligosaccharide O-antigen, and PgtE remains functionally cryptic in wild-type Salmonella cultivated in vitro. Interestingly, our results showed that due to increased expression of PgtE and to reduced length of the LPS O-antigen chains, the wild-type Salmonella expresses highly functional PgtE when isolated from mouse macrophage-like J774A.1 cells. Salmonella is thought to be continuously released from macrophages to infect new ones, and our results suggest that PgtE is functional during these transient extracellular growth phases. Six novel host protein substrates were identified for PgtE in this work. PgtE was previously known to activate human plasminogen (Plg) to plasmin, a broad-spectrum serine protease, and in this study PgtE was shown to interfere with the Plg system by inactivating the main inhibitor of plasmin, alpha2-antiplasmin. PgtE also interferes with another important proteolytic system of mammals by activating pro-matrix metalloproteinase-9 to an active gelatinase. PgtE also directly degrades gelatin, a component of extracellular matrices. PgtE also increases bacterial resistance against complement-mediated killing in human serum and enhances survival of Salmonella within murine macrophages as well as in the liver and spleen of intraperitoneally infected mice. Taken together, the results in this study suggest that PgtE is a virulence factor of Salmonella that has adapted to interfere with host proteolytic systems and to modify extracellular matrix; these features likely assist the migration of Salmonella during systemic salmonellosis.
Resumo:
Thirty percent of 70-year-old women have osteoporosis; after age of 80 its prevalence is up to 70%. Postmenopausal women with osteoporosis seem to be at an increased risk for cardiovascular events, and deterioration of oral health, as shown by attachment loss of teeth, which is proportional to the severity of osteoporosis. Osteoporosis can be treated with many different medication, e.g. estrogen and alendronate. We randomized 90 elderly osteoporotic women (65-80 years of age) to receive hormone therapy (HT)(2mg E2+NETA), 10mg alendronate, and their combination for two years and compared their effects on bone mineral density (BMD) and turnover, two surrogate markers of the risk of cardiovascular diseases, C-reactive protein (CRP) and E-selectin, as well as oral health. The effect of HT on health-related quality of life (HRQoL) was studied in the population-based cohort of 1663 postmenopausal women (mean age 68 yr) (585 estrogen users and 1078 non-users). BMD was measured with dual-energy X-ray absorptiometry (DXA) at 0, 12 and 24 months. Urinary N-telopeptide (NTX) of type I collagen, a marker of bone resorption, and serum aminoterminal propeptide of human type I procollagen (PINP), a marker of bone formation, were measured every six months of treatment. Serum CRP and E-selectin, were measured at 0, 6, and 12 months. Dental, and periodontal conditions, and gingival crevicular fluid (GCF) matrix metalloproteinase (MMP)-8 levels were studied to evaluate the oral health status and for the mouth symptoms a structured questionnaire was used. The HRQoL was measured with 15D questionnaire. Lumbar spine BMD increased similarly in all treatment groups (6.8-8.4% and 9.1-11.2%). Only HT increased femoral neck BMD at both 12 (4.9%) and 24 months (5.8%), at the latter time point the HT group differed significantly from the other groups. HT reduced bone marker levels of NTX and PINP significantly less than other two groups.Oral HT significantly increased serum CRP level by 76.5% at 6 and by 47.1% (NS) at 12 months, and decreased serum E-selectin level by 24.3% and 30.0%. Alendronate had no effect on these surrogate markers. Alendronate caused a decrease in the resting salivary flow rate and tended to increase GCF MMP-8 levels. Otherwise, there was no effect on the parameters of oral health. HT improved the HRQoL of elderly women significantly on the dimensions of usual activities, vitality and sexual activity, but the overall improvement in HRQoL was neither statistically significant nor clinically important. In conclusion, bisphosphonates might be the first option to start the treatment of postmenopausal osteoporosis in the old age.
Resumo:
Chronic periodontitis results from a complex aetiology, including the formation of a subgingival biofilm and the elicitation of the host s immune and inflammatory response. The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. Evidence supports that periodontitis progresses in dynamic states of exacerbation and remission or quiescence. The major clinical approach to identify disease progression is the tolerance method, based on sequential probing. Collagen degradation is one of the key events in periodontal destructive lesions. Matrix metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are associated with the severity of periodontal inflammation and disease, either by a direct breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. Despite the numerous host mediators that have been proposed as potential biomarkers for chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. The aim of the present study was to determine the key molecular MMP-8 and -13 interactions in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions and MMP-8 null allele mouse model. In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis patients, which were determined clinically by the tolerance method, and healthy GCF were analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic periodontitis was characterised by increased MMP-13 levels and the active sites showed a tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein concentration compared to inactive sites. In study (II), we investigated whether MMP-13 activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In study (III), we analysed the potential association between the levels, molecular forms, isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with progression episodes and treatment response. Because MMP-8 is activated by hypochlorous acid in vitro, our results suggested an interaction between the MPO oxidative pathway and MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and RANKL might promote the development and/or progression of periodontitis.
Resumo:
Total hip replacement is the golden standard treatment for severe osteoarthritis refractory for conservative treatment. Aseptic loosening and osteolysis are the major long-term complications after total hip replacement. Foreign body giant cells and osteoclasts are locally formed around aseptically loosening implants from precursor cells by cell fusion. When the foreign body response is fully developed, it mediates inflammatory and destructive host responses, such as collagen degradation. In the present study, it was hypothesized that the wear debris and foreign body inflammation are the forces driving local osteoclast formation, peri-implant bone resorption and enhanced tissue remodeling. Therefore the object was to characterize the eventual expression and the role of fusion molecules, ADAMs (an abbreviation for A Disintegrin And Metalloproteinase, ADAM9 and ADAM12) in the fusion of progenitor cells into multinuclear giant cells. For generation of such cells, activated macrophages trying to respond to foreign debris play an important role. Matured osteoclasts together with activated macrophages mediate bone destruction by secreting protons and proteinases, including matrix metalloproteinases (MMPs) and cathepsin K. Thus this study also assessed collagen degradation and its relationship to some of the key collagenolytic proteinases in the aggressive synovial membrane-like interface tissue around aseptically loosened hip replacement implants. ADAMs were found in the interface tissues of revision total hip replacement patients. Increased expression of ADAMs at both transcriptional and translational levels was found in synovial membrane-like interface tissue of revision total hip replacement (THR) samples compared with that in primary THR samples. These studies also demonstrate that multinucleate cell formation from monocytes by stimulation with macrophage-colony stimiulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) is characterized by time dependent changes of the proportion of ADAMs positive cells. This was observed both in the interface membrane in patients and in two different in vitro models. In addition to an already established MCS-F and RANKL driven model, a new virally (parainfluenza 2) driven model (of human salivary adenocarcinoma (HSY) cells or green monkey kidney (GMK) cells) was developed to study various fusion molecules and their role in cell fusion in general. In interface membranes, collagen was highly degraded and collagen degradation significantly correlated with the number of local cells containing collagenolytic enzymes, particularly cathepsin K. As a conclusion, fusion molecules ADAM9 and ADAM12 seem to be dynamically involved in cell-cell fusion processes and multinucleate cell formation. The highly significant correlation between collagen degradation and collagenolytic enzymes, particularly cathepsin K, indicates that the local acidity of the interface membrane in the pathologic bone and soft tissue destruction. This study provides profound knowledge about cell fusion and mechanism responsible for aseptic loosening as well as increases knowledge helpful for prevention and treatment.
Resumo:
The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.
Resumo:
Periodontal Disease affects the supporting structures of the teeth and is initiated by a microbial biofilm called dental plaque. Severity ranges from superficial inflammation of the gingiva (gingivitis) to extensive destruction of connective tissue and bone leading to tooth loss (periodontitis). In periodontitis the destruction of tissue is caused by a cascade of microbial and host factors together with proteolytic enzymes. Matrix metalloproteinases (MMPs) are known to be central mediators of the pathologic destruction in periodontitis. Initially plaque bacteria provide pathogen-associated molecular patterns (PAMPs) which are sensed by Toll-like receptors (TLRs), and initiate intracellular signaling cascades leading to host inflammation. Our aim was to characterize TNF-α (tumor necrosis factor-alpha) and its type I and II receptors in periodontal tissues, as well as, the effects of TNF-α, IL-1β (interleukin-1beta) and IL-17 on the production and/or activation of MMP-3, MMP-8 and MMP-9. Furthermore we mapped the TLRs in periodontal tissues and assessed how some of the PAMPs binding to the key TLRs found in periodontal tissues affect production of TNF-α and IL-1β by gingival epithelial cells with or without combination of IL-17. TNF-α and its receptors were detected in pericoronitis. Furthermore, increased expression of interleukin-1β and vascular cell adhesion molecule-1 was found as a biological indicator of TNF-α ligand-receptor interaction. MMP-3, -8, and 9 were investigated in periodontitis affected human gingival crevicular fluid and gingival fibroblasts produced pro-MMP-3. Following that, the effect of IL-17 was studied on MMP and pro-inflammatory cytokine production. IL-17 was increased in periodontitis and up-regulated IL-1β, TNF-α, MMP-1 and MMP-3. We continued by demonstrating TLRs in gingival tissues, in which significant differences between patients with periodontitis and healthy controls were found. Finally, enzyme-linked immunosorbent assays were performed to show that the gingival cells response to inflammatory responses in a TLR-dependent manner. Briefly, this thesis demonstrates that TLRs are present in periodontal tissues and present differences in periodontitis compared to healthy controls. The cells of gingival tissues respond to inflammatory process in a TLR-dependent manner by producing pro-inflammatory cytokines. During the destruction of periodontal tissues, the release (IL-1β and TNF-α) and co-operation with other pro-inflammatory cytokines (IL-17), which in turn increase the inflammation and thus be more harmful to the host with the increased presence of MMPs (MMP-1, MMP-3, MMP-8, MMP-9) in diseased over healthy sites.