5 resultados para Lilienthal, M. E. (Max E.), 1815-1882.

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies have shown that the speed of information transmission developed radically during the 19th century. The fast development was mainly due to the change from sailing ships and horse-driven coaches to steamers and railways, as well as the telegraph. Speed of information transmission has normally been measured by calculating the duration between writing and receiving a letter, or between an important event and the time when the news was published elsewhere. As overseas mail was generally carried by ships, the history of communications and maritime history are closely related. This study also brings a postal historical aspect to the academic discussion. Additionally, there is another new aspect included. In business enterprises, information flows generally consisted of multiple transactions. Although fast one-way information was often crucial, e.g. news of a changing market situation, at least equally important was that there was a possibility to react rapidly. To examine the development of business information transmission, the duration of mail transport has been measured by a systematic and commensurable method, using consecutive information circles per year as the principal tool for measurement. The study covers a period of six decades, several of the world's most important trade routes and different mail-carrying systems operated by merchant ships, sailing packets and several nations' steamship services. The main sources have been the sailing data of mail-carrying ships and correspondence of several merchant houses in England. As the world's main trade routes had their specific historical backgrounds with different businesses, interests and needs, the systems for information transmission did not develop similarly or simultaneously. It was a process lasting several decades, initiated by the idea of organizing sailings in a regular line system. The evolution proceeded generally as follows: originally there was a more or less irregular system, then a regular system and finally a more frequent regular system of mail services. The trend was from sail to steam, but both these means of communication improved following the same scheme. Faster sailings alone did not radically improve the number of consecutive information circles per year, if the communication was not frequent enough. Neither did improved frequency advance the information circulation if the trip was very long or if the sailings were overlapping instead of complementing each other. The speed of information transmission could be improved by speeding up the voyage itself (technological improvements, minimizing the waiting time at ports of call, etc.) but especially by organizing sailings so that the recipients had the possibility to reply to arriving mails without unnecessary delay. It took two to three decades before the mail-carrying shipping companies were able to organize their sailings in an optimal way. Strategic shortcuts over isthmuses (e.g. Panama, Suez) together with the cooperation between steamships and railways enabled the most effective improvements in global communications before the introduction of the telegraph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for nonnegative matrices A and C. We present a local algorithm (constant-time distributed algorithm) for approximating max-min LPs. The approximation ratio of our algorithm is the best possible for any local algorithm; there is a matching unconditional lower bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0. In a min-max LP, the objective is to minimise ρ subject to Ax ≤ ρ1, Cx ≥ 1, and x ≥ 0. The matrices A and C are nonnegative and sparse: each row ai of A has at most ΔI positive elements, and each row ck of C has at most ΔK positive elements. We study the approximability of max-min LPs and min-max LPs in a distributed setting; in particular, we focus on local algorithms (constant-time distributed algorithms). We show that for any ΔI ≥ 2, ΔK ≥ 2, and ε > 0 there exists a local algorithm that achieves the approximation ratio ΔI (1 − 1/ΔK) + ε. We also show that this result is the best possible: no local algorithm can achieve the approximation ratio ΔI (1 − 1/ΔK) for any ΔI ≥ 2 and ΔK ≥ 2.