25 resultados para LIFETIME MEASUREMENTS
em Helda - Digital Repository of University of Helsinki
Resumo:
Volatile organic compounds (VOCs) affect atmospheric chemistry and thereafter also participate in the climate change in many ways. The long-lived greenhouse gases and tropospheric ozone are the most important radiative forcing components warming the climate, while aerosols are the most important cooling component. VOCs can have warming effects on the climate: they participate in tropospheric ozone formation and compete for oxidants with the greenhouse gases thus, for example, lengthening the atmospheric lifetime of methane. Some VOCs, on the other hand, cool the atmosphere by taking part in the formation of aerosol particles. Some VOCs, in addition, have direct health effects, such as carcinogenic benzene. VOCs are emitted into the atmosphere in various processes. Primary emissions of VOC include biogenic emissions from vegetation, biomass burning and human activities. VOCs are also produced in secondary emissions from the reactions of other organic compounds. Globally, forests are the largest source of VOC entering the atmosphere. This thesis focuses on the measurement results of emissions and concentrations of VOCs in one of the largest vegetation zones in the world, the boreal zone. An automated sampling system was designed and built for continuous VOC concentration and emission measurements with a proton transfer reaction - mass spectrometer (PTR-MS). The system measured one hour at a time in three-hourly cycles: 1) ambient volume mixing-ratios of VOCs in the Scots-pine-dominated boreal forest, 2) VOC fluxes above the canopy, and 3) VOC emissions from Scots pine shoots. In addition to the online PTR-MS measurements, we determined the composition and seasonality of the VOC emissions from a Siberian larch with adsorbent samples and GC-MS analysis. The VOC emissions from Siberian larch were reported for the fist time in the literature. The VOC emissions were 90% monoterpenes (mainly sabinene) and the rest sesquiterpenes (mainly a-farnesene). The normalized monoterpene emission potentials were highest in late summer, rising again in late autumn. The normalized sesquiterpene emission potentials were also highest in late summer, but decreased towards the autumn. The emissions of mono- and sesquiterpenes from the deciduous Siberian larch, as well as the emissions of monoterpenes measured from the evergreen Scots pine, were well described by the temperature-dependent algorithm. In the Scots-pine-dominated forest, canopy-scale emissions of monoterpenes and oxygenated VOCs (OVOCs) were of the same magnitude. Methanol and acetone were the most abundant OVOCs emitted from the forest and also in the ambient air. Annually, methanol and mixing ratios were of the order of 1 ppbv. The monoterpene and sum of isoprene 2-methyl-3-buten-2-ol (MBO) volume mixing-ratios were an order of magnitude lower. The majority of the monoterpene and methanol emissions from the Scots-pinedominated forest were explained by emissions from Scots pine shoots. The VOCs were divided into three classes based on the dynamics of the summer-time concentrations: 1) reactive compounds with local biological, anthropogenic or chemical sources (methanol, acetone, butanol and hexanal), 2) compounds whose emissions are only temperaturedependent (monoterpenes), 3) long-lived compounds (benzene, acetaldehyde). Biogenic VOC (methanol, acetone, isoprene MBO and monoterpene) volume mixing-ratios had clear diurnal patterns during summer. The ambient mixing ratios of other VOCs did not show this behaviour. During winter we did not observe systematical diurnal cycles for any of the VOCs. Different sources, removal processes and turbulent mixing explained the dynamics of the measured mixing-ratios qualitatively. However, quantitative understanding will require longterm emission measurements of the OVOCs and the use of comprehensive chemistry models. Keywords: Hydrocarbons, VOC, fluxes, volume mixing-ratio, boreal forest
Resumo:
The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.
Resumo:
This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.
Resumo:
Visual acuities at the time of referral and on the day before surgery were compared in 124 patients operated on for cataract in Vaasa Central Hospital, Finland. Preoperative visual acuity and the occurrence of ocular and general disease were compared in samples of consecutive cataract extractions performed in 1982, 1985, 1990, 1995 and 2000 in two hospitals in the Vaasa region in Finland. The repeatability and standard deviation of random measurement error in visual acuity and refractive error determination in a clinical environment in cataractous, pseudophakic and healthy eyes were estimated by re-examining visual acuity and refractive error of patients referred to cataract surgery or consultation by ophthalmic professionals. Altogether 99 eyes of 99 persons (41 cataractous, 36 pseudophakic and 22 healthy eyes) with a visual acuity range of Snellen 0.3 to 1.3 (0.52 to -0.11 logMAR) were examined. During an average waiting time of 13 months, visual acuity in the study eye decreased from 0.68 logMAR to 0.96 logMAR (from 0.2 to 0.1 in Snellen decimal values). The average decrease in vision was 0.27 logMAR per year. In the fastest quartile, visual acuity change per year was 0.75 logMAR, and in the second fastest 0.29 logMAR, the third and fourth quartiles were virtually unaffected. From 1982 to 2000, the incidence of cataract surgery increased from 1.0 to 7.2 operations per 1000 inhabitants per year in the Vaasa region. The average preoperative visual acuity in the operated eye increased by 0.85 logMAR (in decimal values from 0.03to 0.2) and in the better eye 0.27 logMAR (in decimal values from 0.23 to 0.43) over this period. The proportion of patients profoundly visually handicapped (VA in the better eye <0.1) before the operation fell from 15% to 4%, and that of patients less profoundly visually handicapped (VA in the better eye 0.1 to <0.3) from 47% to 15%. The repeatability visual acuity measurement estimated as a coefficient of repeatability for all 99 eyes was ±0.18 logMAR, and the standard deviation of measurement error was 0.06 logMAR. Eyes with the lowest visual acuity (0.3-0.45) had the largest variability, the coefficient of repeatability values being ±0.24 logMAR and eyes with a visual acuity of 0.7 or better had the smallest, ±0.12 logMAR. The repeatability of refractive error measurement was studied in the same patient material as the repeatability of visual acuity. Differences between measurements 1 and 2 were calculated as three-dimensional vector values and spherical equivalents and expressed by coefficients of repeatability. Coefficients of repeatability for all eyes for vertical, torsional and horisontal vectors were ±0.74D, ±0.34D and ±0.93D, respectively, and for spherical equivalent for all eyes ±0.74D. Eyes with lower visual acuity (0.3-0.45) had larger variability in vector and spherical equivalent values (±1.14), but the difference between visual acuity groups was not statistically significant. The difference in the mean defocus equivalent between measurements 1 and 2 was, however, significantly greater in the lower visual acuity group. If a change of ±0.5D (measured in defocus equivalents) is accepted as a basis for change of spectacles for eyes with good vision, the basis for eyes in the visual acuity range of 0.3 - 0.65 would be ±1D. Differences in repeated visual acuity measurements are partly explained by errors in refractive error measurements.
Resumo:
The adequacy of anesthesia has been studied since the introduction of balanced general anesthesia. Commercial monitors based on electroencephalographic (EEG) signal analysis have been available for monitoring the hypnotic component of anesthesia from the beginning of the 1990s. Monitors measuring the depth of anesthesia assess the cortical function of the brain, and have gained acceptance during surgical anesthesia with most of the anesthetic agents used. However, due to frequent artifacts, they are considered unsuitable for monitoring consciousness in intensive care patients. The assessment of analgesia is one of the cornerstones of general anesthesia. Prolonged surgical stress may lead to increased morbidity and delayed postoperative recovery. However, no validated monitoring method is currently available for evaluating analgesia during general anesthesia. Awareness during anesthesia is caused by an inadequate level of hypnosis. This rare but severe complication of general anesthesia may lead to marked emotional stress and possibly posttraumatic stress disorder. In the present series of studies, the incidence of awareness and recall during outpatient anesthesia was evaluated and compared with that of in inpatient anesthesia. A total of 1500 outpatients and 2343 inpatients underwent a structured interview. Clear intraoperative recollections were rare the incidence being 0.07% in outpatients and 0.13% in inpatients. No significant differences emerged between outpatients and inpatients. However, significantly smaller doses of sevoflurane were administered to outpatients with awareness than those without recollections (p<0.05). EEG artifacts in 16 brain-dead organ donors were evaluated during organ harvest surgery in a prospective, open, nonselective study. The source of the frontotemporal biosignals in brain-dead subjects was studied, and the resistance of bispectral index (BIS) and Entropy to the signal artifacts was compared. The hypothesis was that in brain-dead subjects, most of the biosignals recorded from the forehead would consist of artifacts. The original EEG was recorded and State Entropy (SE), Response Entropy (RE), and BIS were calculated and monitored during solid organ harvest. SE differed from zero (inactive EEG) in 28%, RE in 29%, and BIS in 68% of the total recording time (p<0.0001 for all). The median values during the operation were SE 0.0, RE 0.0, and BIS 3.0. In four of the 16 organ donors, EEG was not inactive, and unphysiologically distributed, nonreactive rhythmic theta activity was present in the original EEG signal. After the results from subjects with persistent residual EEG activity were excluded, SE, RE, and BIS differed from zero in 17%, 18%, and 62% of the recorded time, respectively (p<0.0001 for all). Due to various artifacts, the highest readings in all indices were recorded without neuromuscular blockade. The main sources of artifacts were electrocauterization, electromyography (EMG), 50-Hz artifact, handling of the donor, ballistocardiography, and electrocardiography. In a prospective, randomized study of 26 patients, the ability of Surgical Stress Index (SSI) to differentiate patients with two clinically different analgesic levels during shoulder surgery was evaluated. SSI values were lower in patients with an interscalene brachial plexus block than in patients without an additional plexus block. In all patients, anesthesia was maintained with desflurane, the concentration of which was targeted to maintain SE at 50. Increased blood pressure or heart rate (HR), movement, and coughing were considered signs of intraoperative nociception and treated with alfentanil. Photoplethysmographic waveforms were collected from the contralateral arm to the operated side, and SSI was calculated offline. Two minutes after skin incision, SSI was not increased in the brachial plexus block group and was lower (38 ± 13) than in the control group (58 ± 13, p<0.005). Among the controls, one minute prior to alfentanil administration, SSI value was higher than during periods of adequate antinociception, 59 ± 11 vs. 39 ± 12 (p<0.01). The total cumulative need for alfentanil was higher in controls (2.7 ± 1.2 mg) than in the brachial plexus block group (1.6 ± 0.5 mg, p=0.008). Tetanic stimulation to the ulnar region of the hand increased SSI significantly only among patients with a brachial plexus block not covering the site of stimulation. Prognostic value of EEG-derived indices was evaluated and compared with Transcranial Doppler Ultrasonography (TCD), serum neuron-specific enolase (NSE) and S-100B after cardiac arrest. Thirty patients resuscitated from out-of-hospital arrest and treated with induced mild hypothermia for 24 h were included. Original EEG signal was recorded, and burst suppression ratio (BSR), RE, SE, and wavelet subband entropy (WSE) were calculated. Neurological outcome during the six-month period after arrest was assessed with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). Twenty patients had a CPC of 1-2, one patient had a CPC of 3, and nine patients died (CPC 5). BSR, RE, and SE differed between good (CPC 1-2) and poor (CPC 3-5) outcome groups (p=0.011, p=0.011, p=0.008, respectively) during the first 24 h after arrest. WSE was borderline higher in the good outcome group between 24 and 48 h after arrest (p=0.050). All patients with status epilepticus died, and their WSE values were lower (p=0.022). S-100B was lower in the good outcome group upon arrival at the intensive care unit (p=0.010). After hypothermia treatment, NSE and S-100B values were lower (p=0.002 for both) in the good outcome group. The pulsatile index was also lower in the good outcome group (p=0.004). In conclusion, the incidence of awareness in outpatient anesthesia did not differ from that in inpatient anesthesia. Outpatients are not at increased risk for intraoperative awareness relative to inpatients undergoing general anesthesia. SE, RE, and BIS showed non-zero values that normally indicate cortical neuronal function, but were in these subjects mostly due to artifacts after clinical brain death diagnosis. Entropy was more resistant to artifacts than BIS. During general anesthesia and surgery, SSI values were lower in patients with interscalene brachial plexus block covering the sites of nociceptive stimuli. In detecting nociceptive stimuli, SSI performed better than HR, blood pressure, or RE. BSR, RE, and SE differed between the good and poor neurological outcome groups during the first 24 h after cardiac arrest, and they may be an aid in differentiating patients with good neurological outcomes from those with poor outcomes after out-of-hospital cardiac arrest.
Resumo:
Data assimilation provides an initial atmospheric state, called the analysis, for Numerical Weather Prediction (NWP). This analysis consists of pressure, temperature, wind, and humidity on a three-dimensional NWP model grid. Data assimilation blends meteorological observations with the NWP model in a statistically optimal way. The objective of this thesis is to describe methodological development carried out in order to allow data assimilation of ground-based measurements of the Global Positioning System (GPS) into the High Resolution Limited Area Model (HIRLAM) NWP system. Geodetic processing produces observations of tropospheric delay. These observations can be processed either for vertical columns at each GPS receiver station, or for the individual propagation paths of the microwave signals. These alternative processing methods result in Zenith Total Delay (ZTD) and Slant Delay (SD) observations, respectively. ZTD and SD observations are of use in the analysis of atmospheric humidity. A method is introduced for estimation of the horizontal error covariance of ZTD observations. The method makes use of observation minus model background (OmB) sequences of ZTD and conventional observations. It is demonstrated that the ZTD observation error covariance is relatively large in station separations shorter than 200 km, but non-zero covariances also appear at considerably larger station separations. The relatively low density of radiosonde observing stations limits the ability of the proposed estimation method to resolve the shortest length-scales of error covariance. SD observations are shown to contain a statistically significant signal on the asymmetry of the atmospheric humidity field. However, the asymmetric component of SD is found to be nearly always smaller than the standard deviation of the SD observation error. SD observation modelling is described in detail, and other issues relating to SD data assimilation are also discussed. These include the determination of error statistics, the tuning of observation quality control and allowing the taking into account of local observation error correlation. The experiments made show that the data assimilation system is able to retrieve the asymmetric information content of hypothetical SD observations at a single receiver station. Moreover, the impact of real SD observations on humidity analysis is comparable to that of other observing systems.
Resumo:
The Earth's ecosystems are protected from the dangerous part of the solar ultraviolet (UV) radiation by stratospheric ozone, which absorbs most of the harmful UV wavelengths. Severe depletion of stratospheric ozone has been observed in the Antarctic region, and to a lesser extent in the Arctic and midlatitudes. Concern about the effects of increasing UV radiation on human beings and the natural environment has led to ground based monitoring of UV radiation. In order to achieve high-quality UV time series for scientific analyses, proper quality control (QC) and quality assurance (QA) procedures have to be followed. In this work, practices of QC and QA are developed for Brewer spectroradiometers and NILU-UV multifilter radiometers, which measure in the Arctic and Antarctic regions, respectively. These practices are applicable to other UV instruments as well. The spectral features and the effect of different factors affecting UV radiation were studied for the spectral UV time series at Sodankylä. The QA of the Finnish Meteorological Institute's (FMI) two Brewer spectroradiometers included daily maintenance, laboratory characterizations, the calculation of long-term spectral responsivity, data processing and quality assessment. New methods for the cosine correction, the temperature correction and the calculation of long-term changes of spectral responsivity were developed. Reconstructed UV irradiances were used as a QA tool for spectroradiometer data. The actual cosine correction factor was found to vary between 1.08-1.12 and 1.08-1.13. The temperature characterization showed a linear temperature dependence between the instrument's internal temperature and the photon counts per cycle. Both Brewers have participated in international spectroradiometer comparisons and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002-2010. The features of the spectral UV radiation time series at Sodankylä were analysed for the time period 1990-2001. No statistically significant long-term changes in UV irradiances were found, and the results were strongly dependent on the time period studied. Ozone was the dominant factor affecting UV radiation during the springtime, whereas clouds played a more important role during the summertime. During this work, the Antarctic NILU-UV multifilter radiometer network was established by the Instituto Nacional de Meteorogía (INM) as a joint Spanish-Argentinian-Finnish cooperation project. As part of this work, the QC/QA practices of the network were developed. They included training of the operators, daily maintenance, regular lamp tests and solar comparisons with the travelling reference instrument. Drifts of up to 35% in the sensitivity of the channels of the NILU-UV multifilter radiometers were found during the first four years of operation. This work emphasized the importance of proper QC/QA, including regular lamp tests, for the multifilter radiometers also. The effect of the drifts were corrected by a method scaling the site NILU-UV channels to those of the travelling reference NILU-UV. After correction, the mean ratios of erythemally-weighted UV dose rates measured during solar comparisons between the reference NILU-UV and the site NILU-UVs were 1.007±0.011 and 1.012±0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80°. Solar comparisons between the NILU-UVs and spectroradiometers showed a ±5% difference near local noon time, which can be seen as proof of successful QC/QA procedures and transfer of irradiance scales. This work also showed that UV measurements made in the Arctic and Antarctic can be comparable with each other.
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
This work is focused on the effects of energetic particle precipitation of solar or magnetospheric origin on the polar middle atmosphere. The energetic charged particles have access to the atmosphere in the polar areas, where they are guided by the Earth's magnetic field. The particles penetrate down to 20-100 km altitudes (stratosphere and mesosphere) ionising the ambient air. This ionisation leads to production of odd nitrogen (NOx) and odd hydrogen species, which take part in catalytic ozone destruction. NOx has a very long chemical lifetime during polar night conditions. Therefore NOx produced at high altitudes during polar night can be transported to lower stratospheric altitudes. Particular emphasis in this work is in the use of both space and ground based observations: ozone and NO2 measurements from the GOMOS instrument on board the European Space Agency's Envisat-satellite are used together with subionospheric VLF radio wave observations from ground stations. Combining the two observation techniques enabled detection of NOx enhancements throughout the middle atmosphere, including tracking the descent of NOx enhancements of high altitude origin down to the stratosphere. GOMOS observations of the large Solar Proton Events of October-November 2003 showed the progression of the SPE initiated NOx enhancements through the polar winter. In the upper stratosphere, nighttime NO2 increased by an order of magnitude, and the effect was observed to last for several weeks after the SPEs. Ozone decreases up to 60 % from the pre-SPE values were observed in the upper stratosphere nearly a month after the events. Over several weeks the GOMOS observations showed the gradual descent of the NOx enhancements to lower altitudes. Measurements from years 2002-2006 were used to study polar winter NOx increases and their connection to energetic particle precipitation. NOx enhancements were found to occur in a good correlation with both increased high-energy particle precipitation and increased geomagnetic activity. The average wintertime polar NOx was found to have a nearly linear relationship with the average wintertime geomagnetic activity. The results from this thesis work show how important energetic particle precipitation from outside the atmosphere is as a source of NOx in the middle atmosphere, and thus its importance to the chemical balance of the atmosphere.
Resumo:
We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9+9.5-8.5 (stat) +/- 2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5+8.8-8.9 (stat) +/- 3.8 (syst) GeV/c2. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3 (stat) +/- 2.6 (syst) GeV/c2.