4 resultados para Jacquinet, Ag.-Magd.

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizoctonia solani is a soil inhabiting basidiomycetous fungus able to induce a wide range of symptoms in many plant species. This genetically complex species is divided to 13 anastomosis groups (AG), of which AG-3 is specialized to infect potato. However, also a few other AGs are able to infect or live in close contact with potato. On potato, R. solani infection causes two main types of diseases including stem canker observed as a dark brown lesions on developing stems and stolons, and black scurf that develops on new tubers close to the time of harvest. These disease symptoms are collectively called a ‘Rhizoctonia disease complex’. Between the growing seasons R. solani survives in soil and plant debri as sclerotia or as the sclerotia called black scurf on potato tubers which when used as seed offer the main route for dispersal of the fungus to new areas. The reasons for the dominance of AG-3 on potato seem to be attributable to its highly specialization to potato and its ability to infect and form sclerotia efficiently at low temperatures. In this study, a large nationwide survey of R. solani isolates was made in potato crops in Finland. Almost all characterized isolates belonged to AG-3. Additionally, three other AGs (AG-2-1, AG-4 and AG-5) were found associated with symptoms on potato plants but they were weaker pathogens on potato than AG-3 as less prone to form black scurf. According to phylogenetic analysis of the internal transcribed sequences (ITS) of the ribosomal RNA genes the Finnish AG-3 isolates are closely related to each other even though a wide variation of physiological features was observed between them. Detailed analysis of the ITS regions revealed single nucleotide polymorphism in 14 nucleotide positions of ITS-1 and ITS-2. Additionally, compensatory base changes on ITS-2 were detected which suggests that potato-infecting R. solani AG-3 could be considered as a separate species instead of an AG of R. solani. For the first time, molecular defence responses were studied and detected during the early phases of interaction between R. solani AG-3 and potato. Extensive systemic signalling for defence exploiting several known defence pathways was activated as soon as R. solani came into close contact with the base of a sprout. The defence response was strong enough to protect vulnerable sprout tips from new attacks by the pathogen. These results at least partly explain why potato emergence is eventually successful even under heavy infection pressure by R. solani.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Trust and Collectives" is a compilation of articles: (I) "On Rational Trust" (in Meggle, G. (ed.) Social Facts & Collective Intentionality, Dr. Hänsel-Hohenhausen AG (currently Ontos), 2002), (II) "Simulating Rational Social Normative Trust, Predictive Trust, and Predictive Reliance Between Agents" (M.Tuomela and S. Hofmann, Ethics and Information Technology 5, 2003), (III) "A Collective's Trust in a Collective's action" (Protosociology, 18-19, 2003), and (IV) "Cooperation and Trust in Group Contexts" (R. Tuomela and M.Tuomela, Mind and Society 4/1, 2005 ). The articles are tied together by an introduction that dwells deeply on the topic of trust. (I) presents a somewhat general version of (RSNTR) and some basic arguments. (II) offers an application of (RSNTR) for a computer simulation of trust.(III) applies (RSNTR) to Raimo Tuomela's "we-mode"collectives (i.e. The Philosophy of Social Practices, Cambridge University Press, 2002). (IV) analyzes cooperation and trust in the context of acting as a member of a collective. Thus, (IV) elaborates on the topic of collective agency in (III) and puts the trust account (RSNTR) to work in a framework of cooperation. The central aim of this work is to construct a well-argued conceptual and theoretical account of rational trust, viz. a person's subjectively rational trust in another person vis-à-vis his performance of an action, seen from a first-person point of view. The main method is conceptual and theoretical analysis understood along the lines of reflective equilibrium. The account of rational social normative trust (RSNTR), which is argued and defended against other views, is the result of the quest. The introduction stands on its own legs as an argued presentation of an analysis of the concept of rational trust and an analysis of trust itself (RSNTR). It is claimed that (RSNTR) is "genuine" trust and embedded in a relationship of mutual respect for the rights of the other party. This relationship is the growing site for trust, a causal and conceptual ground, but it is not taken as a reason for trusting (viz. predictive "trust"). Relevant themes such as risk, decision, rationality, control, and cooperation are discussed and the topics of the articles are briefly presented. In this work it is argued that genuine trust is to be kept apart from predictive "trust." When we trust a person vis-à-vis his future action that concerns ourselves on the basis of his personal traits and/or features of the specific situation we have a prediction-like attitude. Genuine trust develops in a relationship of mutual respect for the mutual rights of the other party. Such a relationship is formed through interaction where the parties gradually find harmony concerning "the rules of the game." The trust account stands as a contribution to philosophical research on central social notions and it could be used as a theoretical model in social psychology, economical and political science where interaction between persons and groups are in focus. The analysis could also serve as a model for a trust component in computer simulation of human action. In the context of everyday life the account clarifies the difference between predictive "trust" and genuine trust. There are no fast shortcuts to trust. Experiences of mutual respect for mutual rights cannot be had unless there is respect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.