11 resultados para Inverse Methodology

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between 1935 and 1970 the state-funded Irish Folklore Commission (Coimisiún Béaloideasa Éireann) assembled one of the great folklore collections of the world under the direction of Séamus Ó Duilearga (James Hamilton Delargy). The aim of this study is to recount and assess the work and achievement of this commission. The cultural, linguistic, political and ideological factors that had a bearing on the establishment and making permanent of the Commission and that impinged on many aspects of its work are here elucidated. The genesis of the Commission is traced and the vision and mission of Séamus Ó Duilearga are outlined. The negotiations that preceded the setting up of the Commission in 1935 as well as protracted efforts from 1940 to 1970 to place it on a permanent foundation are recounted and examined at length. All the various collecting programmes and other activities of the Commission are described in detail and many aspects of its work are assessed. This study also deals with the working methods and conditions of employment of the Commission s field and Head Office staff as well as with Séamus Ó Duilearga s direction of the Commission. In executing this work extensive use has been made of primary sources in archives and libraries in Ireland, Sweden, Finland, Estonia, and North America. This is the first major study of this world-famous institute, which has been praised in passing in numerous publications, but here for the first time its work and achievement are detailed comprehensively and subjected to scholarly scrutiny. This study should be of interest not only to students of Irish oral tradition but to folklorists everywhere. The history of the Irish Folklore Commission is a part of a wider history, that of the history of folkloristics in Europe and North America in particular. Moreover, this work has relevance for many areas of the developing world today, where conditions are not dissimilar to those that pertained in Ireland in the 1930's when this great salvage operation was funded by the young, independent Irish state. It is also hoped that this work will be of practical assistance to scholars and the general public when utilising these collections, and that furthermore it will stimulate research into the assembling of other national collections of folklore as well as into the history of folkloristics in other countries, subjects which in recent years are beginning to attract more and more scholarly attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern Christian theology has been at pain with the schism between the Bible and theology, and between biblical studies and systematic theology. Brevard Springs Childs is one of biblical scholars who attempt to dismiss this “iron curtain” separating the two disciplines. The present thesis aims at analyzing Childs’ concept of theological exegesis in the canonical context. In the present study I employ the method of systematic analysis. The thesis consists of seven chapters. Introduction is the first chapter. The second chapter attempts to find out the most important elements which exercise influence on Childs’ methodology of biblical theology by sketching his academic development during his career. The third chapter attempts to deal with the crucial question why and how the concept of the canon is so important for Childs’ methodology of biblical theology. In chapter four I analyze why and how Childs is dissatisfied with historical-critical scholarship and I point out the differences and similarities between his canonical approach and historical criticism. The fifth chapter attempts at discussing Childs’ central concepts of theological exegesis by investigating whether a Christocentric approach is an appropriate way of creating a unified biblical theology. In the sixth chapter I present a critical evaluation and methodological reflection of Childs’ theological exegesis in the canonical context. The final chapter sums up the key points of Childs’ methodology of biblical theology. The basic results of this thesis are as follows: First, the fundamental elements of Childs’ theological thinking are rooted in Reformed theological tradition and in modern theological neo-orthodoxy and in its most prominent theologian, Karl Barth. The American Biblical Theological Movement and the controversy between Protestant liberalism and conservatism in the modern American context cultivate his theological sensitivity and position. Second, Childs attempts to dismiss negative influences of the historical-critical method by establishing canon-based theological exegesis leading into confessional biblical theology. Childs employs terminology such as canonical intentionality, the wholeness of the canon, the canon as the most appropriate context for doing a biblical theology, and the continuity of the two Testaments, in order to put into effect his canonical program. Childs demonstrates forcefully the inadequacies of the historical-critical method in creating biblical theology in biblical hermeneutics, doctrinal theology, and pastoral practice. His canonical approach endeavors to establish and create post-critical Christian biblical theology, and works within the traditional framework of faith seeking understanding. Third, Childs’ biblical theology has a double task: descriptive and constructive, the former connects biblical theology with exegesis, the later with dogmatic theology. He attempts to use a comprehensive model, which combines a thematic investigation of the essential theological contents of the Bible with a systematic analysis of the contents of the Christian faith. Childs also attempts to unite Old Testament theology and New Testament theology into one unified biblical theology. Fourth, some problematic points of Childs’ thinking need to be mentioned. For instance, his emphasis on the final form of the text of the biblical canon is highly controversial, yet Childs firmly believes in it, he even regards it as the corner stone of his biblical theology. The relationship between the canon and the doctrine of biblical inspiration is weak. He does not clearly define whether Scripture is God’s word or whether it only “witnesses” to it. Childs’ concepts of “the word of God” and “divine revelation” remain unclear, and their ontological status is ambiguous. Childs’ theological exegesis in the canonical context is a new attempt in the modern history of Christian theology. It expresses his sincere effort to create a path for doing biblical theology. Certainly, it was just a modest beginning of a long process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large proportion of our knowledge about the surfaces of atmosphereless solar-system bodies is obtained through remote-sensing measurements. The measurements can be carried out either as ground-based telescopic observations or space-based observations from orbiting spacecraft. In both cases, the measurement geometry normally varies during the observations due to the orbital motion of the target body, the spacecraft, etc.. As a result, the data are acquired over a variety of viewing and illumination angles. Surfaces of planetary bodies are usually covered with a layer of loose, broken-up rock material called the regolith whose physical properties affect the directional dependence of remote-sensed measurements. It is of utmost importance for correct interpretation of the remote-sensed data to understand the processes behind this alteration. In the thesis, the multi-angular effects that the physical properties of the regolith have on remote-sensing measurements are studied in two regimes of electromagnetic radiation, visible to near infrared and soft X-rays. These effects are here termed generally the regolith effects in remote sensing. Although the physical mechanisms that are important in these regions are largely different, notable similarities arise in the methodology that is used in the study of the regolith effects, including the characterization of the regolith both in experimental studies and in numerical simulations. Several novel experimental setups have been constructed for the thesis. Alongside the experimental work, theoretical modelling has been carried out, and results from both approaches are presented. Modelling of the directional behaviour of light scattered from a regolith is utilized to obtain shape and spin-state information of several asteroids from telescopic observations and to assess the surface roughness and single-scattering properties of lunar maria from spacecraft observations. One of the main conclusions is that the azimuthal direction is an important factor in detailed studies of planetary surfaces. In addition, even a single parameter, such as porosity, can alter the light scattering properties of a regolith significantly. Surface roughness of the regolith is found to alter the elemental fluorescence line ratios of a surface obtained through planetary soft X-ray spectrometry. The results presented in the thesis are among the first to report this phenomenon. Regolith effects need to be taken into account in the analysis of remote-sensed data, providing opportunities for retrieving physical parameters of the surface through inverse methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological membranes are tightly linked to the evolution of life, because they provide a way to concentrate molecules into partially closed compartments. The dynamic shaping of cellular membranes is essential for many physiological processes, including cell morphogenesis, motility, cytokinesis, endocytosis, and secretion. It is therefore essential to understand the structure of the membrane and recognize the players that directly sculpt the membrane and enable it to adopt different shapes. The actin cytoskeleton provides the force to push eukaryotic plasma membrane in order to form different protrusions or/and invaginations. It has now became evident that actin directly co-operates with many membrane sculptors, including BAR domain proteins, in these important events. However, the molecular mechanisms behind BAR domain function and the differences between the members of this large protein family remain largely unresolved. In this thesis, the structure and functions of the I-BAR domain family members IRSp53 and MIM were thoroughly analyzed. By using several methods such as electron microscopy and systematic mutagenesis, we showed that these I-BAR domain proteins bind to PI(4,5)P2-rich membranes, generate negative membrane curvature and are involved in the formation of plasma membrane protrusions in cells e.g. filopodia. Importantly, we characterized a novel member of the BAR-domain superfamily which we named Pinkbar. We revealed that Pinkbar is specifically expressed in kidney and epithelial cells, and it localizes to Rab13-positive vesicles in intestinal epithelial cells. Remarkably, we learned that the I-BAR domain of Pinkbar does not generate membrane curvature but instead stabilizes planar membranes. Based on structural, mutagenesis and biochemical work we present a model for the mechanism of the novel membrane deforming activity of Pinkbar. Collectively, this work describes the mechanism by which I-BAR domain proteins deform membranes and provides new information about the biological roles of these proteins. Intriguingly, this work also gives evidence that significant functional plasticity exists within the I-BAR domain family. I-BAR proteins can either generate negative membrane curvature or stabilize planar membrane sheets, depending on the specific structural properties of their I-BAR domains. The results presented in this thesis expand our knowledge on membrane sculpting mechanisms and shows for the first time how flat membranes can be generated in cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inverse problem for the wave equation is a mathematical formulation of the problem to convert measurements of sound waves to information about the wave speed governing the propagation of the waves. This doctoral thesis extends the theory on the inverse problems for the wave equation in cases with partial measurement data and also considers detection of discontinuous interfaces in the wave speed. A possible application of the theory is obstetric sonography in which ultrasound measurements are transformed into an image of the fetus in its mother's uterus. The wave speed inside the body can not be directly observed but sound waves can be produced outside the body and their echoes from the body can be recorded. The present work contains five research articles. In the first and the fifth articles we show that it is possible to determine the wave speed uniquely by using far apart sound sources and receivers. This extends a previously known result which requires the sound waves to be produced and recorded in the same place. Our result is motivated by a possible application to reflection seismology which seeks to create an image of the Earth s crust from recording of echoes stimulated for example by explosions. For this purpose, the receivers can not typically lie near the powerful sound sources. In the second article we present a sound source that allows us to recover many essential features of the wave speed from the echo produced by the source. Moreover, these features are known to determine the wave speed under certain geometric assumptions. Previously known results permitted the same features to be recovered only by sequential measurement of echoes produced by multiple different sources. The reduced number of measurements could increase the number possible applications of acoustic probing. In the third and fourth articles we develop an acoustic probing method to locate discontinuous interfaces in the wave speed. These interfaces typically correspond to interfaces between different materials and their locations are of interest in many applications. There are many previous approaches to this problem but none of them exploits sound sources varying freely in time. Our use of more variable sources could allow more robust implementation of the probing.