4 resultados para Integrals, Generalized.
em Helda - Digital Repository of University of Helsinki
Resumo:
The topic of this dissertation lies in the intersection of harmonic analysis and fractal geometry. We particulary consider singular integrals in Euclidean spaces with respect to general measures, and we study how the geometric structure of the measures affects certain analytic properties of the operators. The thesis consists of three research articles and an overview. In the first article we construct singular integral operators on lower dimensional Sierpinski gaskets associated with homogeneous Calderón-Zygmund kernels. While these operators are bounded their principal values fail to exist almost everywhere. Conformal iterated function systems generate a broad range of fractal sets. In the second article we prove that many of these limit sets are porous in a very strong sense, by showing that they contain holes spread in every direction. In the following we connect these results with singular integrals. We exploit the fractal structure of these limit sets, in order to establish that singular integrals associated with very general kernels converge weakly. Boundedness questions consist a central topic of investigation in the theory of singular integrals. In the third article we study singular integrals of different measures. We prove a very general boundedness result in the case where the two underlying measures are separated by a Lipshitz graph. As a consequence we show that a certain weak convergence holds for a large class of singular integrals.
Resumo:
We reformulate and extend our recently introduced quantum kinetic theory for interacting fermion and scalar fields. Our formalism is based on the coherent quasiparticle approximation (cQPA) where nonlocal coherence information is encoded in new spectral solutions at off-shell momenta. We derive explicit forms for the cQPA propagators in the homogeneous background and show that the collision integrals involving the new coherence propagators need to be resummed to all orders in gradient expansion. We perform this resummation and derive generalized momentum space Feynman rules including coherent propagators and modified vertex rules for a Yukawa interaction. As a result we are able to set up self-consistent quantum Boltzmann equations for both fermion and scalar fields. We present several examples of diagrammatic calculations and numerical applications including a simple toy model for coherent baryogenesis.