3 resultados para ITS environments
em Helda - Digital Repository of University of Helsinki
Resumo:
Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.
Resumo:
"Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical activity theory [Engestrom, Y. (1987). Learning by expanding.- An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit; Engestrom, Y., Engestrom, R., & Suntio, A. (2002). Can a school community learn to master its own future? An activity-theoretical study of expansive learning among middle school teachers. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford: Blackwell Publishers]. The teachers were positive about CLEs and their possible role in initiating pedagogical innovation and enhancing personal professional development. This positive perception held across cultures and national boundaries. Teachers were aware of the fact that demanding planning was needed for successful implementations of CLEs. However, the specific strategies through which the teachers can guide students' inquiries in CLEs and the assessment of new competencies that may characterize student performance in the CLEs were poorly represented in the teachers' reflections on CLEs. The attitudes and beliefs of the teachers from separate countries had many similarities, but there were also some clear differences, which are discussed in the article. (c) 2005 Elsevier Ltd. All rights reserved."
Resumo:
This dissertation empirically explored interest as a motivational force in university studies, including the role it currently plays and possible ways of enhancing this role as a student motivator. The general research questions were as follows: 1) What role does interest play in university studies? 2) What explains academic success if studying is not based on interest? 3) How do different learning environments support or impede interest-based studying? Four empirical studies addressed these questions. Study 1 (n=536) compared first-year students explanations of their disciplinary choices in three fields: veterinary medicine, humanities and law. Study 2 (n=28) focused on the role of individual interest in the humanities and veterinary medicine, fields which are very different from each other as regards their nature of studying. Study 3 (n=52) explored veterinary students motivation and study practices in relation to their study success. Study 4 (n=16) explored veterinary students interest experience in individual lectures on a daily basis. By comparing different fields and focusing on one study field in more detail, it was possible to obtain a many-sided picture of the role of interest in different learning environments. Questionnaires and quantitative methods have often been used to measure interest in academic learning. The present work is based mostly on qualitative data, and qualitative methods were applied to add to the previous research. Study 1 explored students open-ended answers, and these provided a basis for the interviews in Study 2. Study 3 explored veterinary students portfolios in a longitudinal setting. For Study 4, a diary including both qualitative and quantitative measures was designed to capture veterinary students interest experience. Qualitative content analysis was applied in all four studies, but quantitative analyses were also added. The thesis showed that university students often explain their disciplinary choices in terms of interest. Because interest is related to high-quality learning, the students seemed to have a good foundation for successful studies. However, the learning environments did not always support interest-based studying; Time-management and coping skills were found to be more important than interest in terms of study success. The results also indicated that interest is not the only motivational variable behind university studies. For example, future goals are needed in order to complete a degree. Even so, the results clearly indicated that it would be worth supporting interest-based studying both in professionally and generally oriented study fields. This support is important not only to promote high-quality learning but also meaningful studying, student well-being, and life-long learning.