4 resultados para Humphry, Ozias, 1743-1810.

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consumption and the lifestyle of the high nobility in eighteenth-century Sweden This monograph is an analysis of the lifestyle, consumption and private finances of the Swedish high nobility during the eighteenth century (ca 1730 1795). It describes the lifestyle of one noble house, the House of Fersen. The Fersen family represents the leading political, economic and cultural elite in eighteenth-century Sweden. The analysis concentrates on Count Carl von Fersen (1716 1786) and his brother Count Axel von Fersen (1719 1794), their spouses and children. Carl von Fersen was a courtier whilst Axel von Fersen was an officer and one of the leaders of the Francophile Hat party. His son, Axel von Fersen the younger, was in his time an officer and a favourite of Gustavus III, King of Sweden, as well as a favourite and trusted confidant of Marie-Antoinette, Queen of France. The research is based upon the Fersen family s private archives, the Counts personal account books, probate inventories, letters and diaries. The study discusses the Fersens landed property and investments in ironworks and manufacturing, the indebtedness of the high nobility, high offices in civil administration, the militia and at court, as well as marriages as the foundations of noble wealth and power. It analyses the Count von Fersens revenue and expenditure, their career options and personal expenses, their involvement in the building and decorating of palaces, and the servants in service of the Fersen family as well as the ideal nobleman and his consumption. Central themes are inheritance, children s education, marriages and ladies preparing their trousseaux, the nobility ordering luxury goods from France, the consumption of Counts and Countesses before and after marrying and having children, the pleasures of a noble life as well as the criticism of luxury and sumptuousness. The study contributes to the large body of research on consumption and nobility in the eighteenth century by connecting the lifestyle, consumption and private finances of the Swedish high nobility to their European context. Key words: nobility, Fersen, lifestyle, consumption, private finances, Sweden, eighteenth century

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper both documentary and natural proxy data have been used to improve the accuracy of palaeoclimatic knowledge in Finland since the 18th century. Early meteorological observations from Turku (1748-1800) were analyzed first as a potential source of climate variability. The reliability of the calculated mean temperatures was evaluated by comparing them with those of contemporary temperature records from Stockholm, St. Petersburg and Uppsala. The resulting monthly, seasonal and yearly mean temperatures from 1748 to 1800 were compared with the present day mean values (1961-1990): the comparison suggests that the winters of the period 1749-1800 were 0.8 ºC colder than today, while the summers were 0.4 ºC warmer. Over the same period, springs were 0.9 ºC and autumns 0.1 ºC colder than today. Despite their uncertainties when compared with modern meteorological data, early temperature measurements offer direct and daily information about the weather for all months of the year, in contrast with other proxies. Secondly, early meteorological observations from Tornio (1737-1749) and Ylitornio (1792-1838) were used to study the temporal behaviour of the climate-tree growth relationship during the past three centuries in northern Finland. Analyses showed that the correlations between ring widths and mid-summer (July) temperatures did not vary significantly as a function of time. Early (June) and late summer (August) mean temperatures were secondary to mid-summer temperatures in controlling the radial growth. According the dataset used, there was no clear signature of temporally reduced sensitivity of Scots pine ring widths to mid-summer temperatures over the periods of early and modern meteorological observations. Thirdly, plant phenological data with tree-rings from south-west Finland since 1750 were examined as a palaeoclimate indicator. The information from the fragmentary, partly overlapping, partly nonsystematically biased plant phenological records of 14 different phenomena were combined into one continuous time series of phenological indices. The indices were found to be reliable indicators of the February to June temperature variations. In contrast, there was no correlation between the phenological indices and the precipitation data. Moreover, the correlations between the studied tree-rings and spring temperatures varied as a function of time and hence, their use in palaeoclimate reconstruction is questionable. The use of present tree-ring datasets for palaeoclimate purposes may become possible after the application of more sophisticated calibration methods. Climate variability since the 18th century is perhaps best seen in the fourth paper study of the multiproxy spring temperature reconstruction of south-west Finland. With the help of transfer functions, an attempt has been made to utilize both documentary and natural proxies. The reconstruction was verified with statistics showing a high degree of validity between the reconstructed and observed temperatures. According to the proxies and modern meteorological observations from Turku, springs have become warmer and have featured a warming trend since around the 1850s. Over the period of 1750 to around 1850, springs featured larger multidecadal low-frequency variability, as well as a smaller range of annual temperature variations. The coldest springtimes occurred around the 1840s and 1850s and the first decade of the 19th century. Particularly warm periods occurred in the 1760s, 1790s, 1820s, 1930s, 1970s and from 1987 onwards, although in this period cold springs occurred, such as the springs of 1994 and 1996. On the basis of the available material, long-term temperature changes have been related to changes in the atmospheric circulation, such as the North Atlantic Oscillation (February-June).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Peat surface CO2 emission, groundwater table depth and peat temperature were monitored for two years along transects in an Acacia plantation on thick tropical peat (>4 m) in Sumatra, Indonesia. A total of 2300 emission measurements were taken at 144 locations. The autotrophic root respiration component of the CO2 emission was separated from heterotrophic emissions caused by peat oxidation in three ways: (i) by comparing CO2 emissions within and beyond the tree rooting zone, (ii) by comparing CO2 emissions with and without peat trenching (i.e. cutting any roots remaining in the peat beyond the tree rooting zone), and (iii) by comparing CO2 emissions before and after Acacia tree harvesting. On average, the contribution of root respiration to daytime CO2 emission is 21 % along transects in mature tree stands. At locations 0.5 m from trees this is up to 80 % of the total emissions, but it is negligible at locations more than 1.3 m away. This means that CO2 emission measurements well away from trees are free of any root respiration contribution and thus represent only peat oxidation emission. We find daytime mean annual CO2 emission from peat oxidation alone of 94 t ha−1 yr−1 at a mean water table depth of 0.8 m, and a minimum emission value of 80 t ha−1 yr−1 after correction for the effect of diurnal temperature fluctuations, which resulted in a 14.5 % reduction of the daytime emission. There is a positive correlation between mean long-term water table depths and peat oxidation CO2 emission. However, no such relation is found for instantaneous emission/water table depth within transects and it is clear that factors other than water table depth also affect peat oxidation and total CO2 emissions. The increase in the temperature of the surface peat due to plantation development may explain over 50 % of peat oxidation emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).