17 resultados para Hormone-dependent cancer

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent diseases, such as breast and prostate cancers, osteoporosis, and cardiovascular disease. Soy is a rich source of isoflavones, diphenolic plant compounds that have been shown to possess several biological activities. Soy is not part of the traditional Western diet, but many dietary supplements are commercially available in order to provide the proposed beneficial health effects of isoflavones without changing the original diet. These supplements are usually manufactured from extracts of soy or red clover, which is another important source of isoflavones. However, until recently, detailed studies of the metabolism of these compounds in humans have been lacking. The aim of this study was to identify urinary metabolites of isoflavones originating from soy or red clover using gas chromatography - mass spectrometry (GC-MS). To examine metabolism, soy and red clover supplementation studies with human volunteers were carried out. In addition, the metabolism of isoflavones was investigated in vitro by identification of metabolites formed during a 24-h fermentation of pure isoflavones with a human fecal inoculum. Qualitative methods for identification and analysis of isoflavone metabolites in urine and fecal fermentation samples by GC-MS were developed. Moreover, a detailed investigation of fragmentation of isoflavonoids in electron ionization mass spectrometry (EIMS) was carried out by means of synthetic reference compounds and deuterated trimethylsilyl derivatives. After isoflavone supplementation, 18 new metabolites of isoflavones were identified in human urine samples. The most abundant urinary metabolites of soy isoflavones daidzein, genistein, and glycitein were found to be the reduced metabolites, i.e. analogous isoflavanones, a-methyldeoxybenzoins, and isoflavans. Metabolites having additional hydroxyl and/or methoxy substituents, or their reduced analogs, were also identified. The main metabolites of red clover isoflavones formononetin and biochanin A were identified as daidzein and genistein. In addition, reduced and hydroxylated metabolites of formononetin and biochanin A were identified; however, they occurred at much lower levels in urine samples than daidzein or genistein or their reduced metabolites. The results of this study show that the metabolism of isoflavones is diverse. More studies are needed to determine whether the new isoflavonoid metabolites identified here have biological activities that contribute to the proposed beneficial effects of isoflavones on human health. Another task is to develop validated quantitative methods to determine the actual levels of isoflavones and their metabolites in biological matrices in order to assess the role of isoflavones in prevention of chronic diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since national differences exist in genes, environment, diet and life habits and also in the use of postmenopausal hormone therapy (HT), the associations between different hormone therapies and the risk for breast cancer were studied among Finnish postmenopausal women. All Finnish women over 50 years of age who used HT were identified from the national medical reimbursement register, established in 1994, and followed up for breast cancer incidence (n= 8,382 cases) until 2005 with the aid of the Finnish Cancer Registry. The risk for breast cancer in HT users was compared to that in the general female population of the same age. Among women using oral or transdermal estradiol alone (ET) (n = 110,984) during the study period 1994-2002 the standardized incidence ratio (SIR) for breast cancer in users for < 5 years was 0.93 (95% confidence interval (CI) 0.80–1.04), and in users for ≥ 5 years 1.44 (1.29–1.59). This therapy was associated with similar rises in ductal and lobular types of breast cancer. Both localized stage (1.45; 1.26–1.66) and cancers spread to regional nodes (1.35; 1.09–1.65) were associated with the use of systemic ET. Oral estriol or vaginal estrogens were not accompanied with a risk for breast cancer. The use of estrogen-progestagen therapy (EPT) in the study period 1994-2005 (n= 221,551) was accompanied with an increased incidence of breast cancer (1.31;1.20-1.42) among women using oral or transdermal EPT for 3-5 years, and the incidence increased along with the increasing duration of exposure (≥10 years, 2.07;1.84-2.30). Continuous EPT entailed a significantly higher (2.44; 2.17-2.72) breast cancer incidence compared to sequential EPT (1.78; 1.64-1.90) after 5 years of use. The use of norethisterone acetate (NETA) as a supplement to estradiol was accompanied with a higher incidence of breast cancer after 5 years of use (2.03; 1.88-2.18) than that of medroxyprogesterone acetate (MPA) (1.64; 1.49-1.79). The SIR for the lobular type of breast cancer was increased within 3 years of EPT exposure (1.35; 1.18-1.53), and the incidence of the lobular type of breast cancer (2.93; 2.33-3.64) was significantly higher than that of the ductal type (1.92; 1.67-2.18) after 10 years of exposure. To control for some confounding factors, two case control studies were performed. All Finnish women between the ages of 50-62 in 1995-2007 and diagnosed with a first invasive breast cancer (n= 9,956) were identified from the Finnish Cancer Registry, and 3 controls of similar age (n=29,868) without breast cancer were retrieved from the Finnish national population registry. Subjects were linked to the medical reimbursement register for defining the HT use. The use of ET was not associated with an increased risk for breast cancer (1.00; 0.92-1.08). Neither was progestagen-only therapy used less than 3 years. However, the use of tibolone was associated with an elevated risk for breast cancer (1.39; 1.07-1.81). The case-control study confirmed the results of EPT regarding sequential vs. continuous use of progestagen, including progestagen released continuously by an intrauterine device; the increased risk was seen already within 3 years of use (1.65;1.32-2.07). The dose of NETA was not a determinant as regards the breast cancer risk. Both systemic ET, and EPT are associated with an elevation in the risk for breast cancer. These risks resemble to a large extent those seen in several other countries. The use of an intrauterine system alone or as a complement to systemic estradiol is also associated with a breast cancer risk. These data emphasize the need for detailed information to women who are considering starting the use of HT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC) regulates the synthesis of polyamines which are involved in many cellular functions e.g. proliferation and differentiation. Due to its critical role, ODC is a tightly regulated enzyme by antizymes and antizyme inhibitors. If the regulation fails, the activity of ODC increases and may lead to malignant transformation of a cell. Increased ODC activity is found in many common cancers, including colon, prostate, and breast cancer. In a transformed cell, dynamics of the actin cytoskeleton is disturbed. A small G-protein, RhoA regulates organization of the cytoskeleton, and its overactivity increases malignant potential of the cell. The present results indicate that covalent attachment of polyamines by transglutaminase is a physiological means of regulating the activity of RhoA. The translocation of RhoA to the plasma membrane, where it exerts its activity is dependent on the presence of catalytically active ODC. As the overactivity of ODC and RhoA are implicated in cell transformation, the results provide a mechanistic explanation of the interrelationship between the polyamine metabolism and the reorganization of the actin cytoskeleton occurring in cancer cells. ODC and polyamines have also an important role in the function of central nervous system. They participate in the regulation of brain morphogenesis in embryos. In adult nervous tissue, polyamines regulate K+ and glutamate channels. K+ inward rectifying channels control membrane potentials and NMDA-type glutamate receptors (NMDAR) regulate synaptic plasticity. High ODC activity and polyamine levels are considered important in the development of ischemic brain damage and they are implicated in the pathogenesis of Alzheimer s disease (AD). A homolog of ODC was cloned from a human brain cDNA library, and several alternatively spliced variants were detected in human brain and testis. The novel protein was nevertheless devoid of ODC catalytic activity. It was subsequently found to be a novel inductor of ODC activity and polyamine synthesis, called antizyme inhibitor 2 (AZIN2). The accumulation of AZIN2 in vesicle-like formations along the axons and beneath the plasma membrane of neurons as well as in steroid hormone producing Leydig cells and luteal cells of the gonads implies that AZIN2 plays a role in secretion and vesicle trafficking. An accumulation of AZIN2 was detected also in specimens of AD brains. This increased expression of AZIN2 was specific for AD and was not found in brains with other neurodegenerative diseases including CADASIL or dementia with Lewy bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virotherapy, the use of oncolytic properties of viruses for eradication of tumor cells, is an attractive strategy for treating cancers resistant to traditional modalities. Adenoviruses can be genetically modified to selectively replicate in and destroy tumor cells through exploitation of molecular differences between normal and cancer cells. The lytic life cycle of adenoviruses results in oncolysis of infected cells and spreading of virus progeny to surrounding cells. In this study, we evaluated different strategies for improving safety and efficacy of oncolytic virotherapy against human ovarian adenocarcinoma. We examined the antitumor efficacy of Ad5/3-Δ24, a serotype 3 receptor-targeted pRb-p16 pathway-selective oncolytic adenovirus, in combination with conventional chemotherapeutic agents. We observed synergistic activity in ovarian cancer cells when Ad5/3-Δ24 was given with either gemcitabine or epirubicin, common second-line treatment options for ovarian cancer. Our results also indicate that gemcitabine reduces the initial rate of Ad5/3-Δ24 replication without affecting the total amount of virus produced. In an orthotopic murine model of peritoneally disseminated ovarian cancer, combining Ad5/3-Δ24 with either gemcitabine or epirubicin resulted in greater therapeutic benefit than either agent alone. Another useful approach for increasing the efficacy of oncolytic agents is to arm viruses with therapeutic transgenes such as genes encoding prodrug-converting enzymes. We constructed Ad5/3-Δ24-TK-GFP, an oncolytic adenovirus encoding the thymidine kinase (TK) green fluorescent protein (GFP) fusion protein. This novel virus replicated efficiently on ovarian cancer cells, which correlated with increased GFP expression. Delivery of prodrug ganciclovir (GCV) immediately after infection abrogated viral replication, which might have utility as a safety switch mechanism. Oncolytic potency in vitro was enhanced by GCV in one cell line, and the interaction was not dependent on scheduling of the treatments. However, in murine models of metastatic ovarian cancer, administration of GCV did not add therapeutic benefit to this highly potent oncolytic agent. Detection of tumor progression and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis in living mice. For optimizing protocols for upcoming clinical trials, we utilized orthotopic murine models of ovarian cancer to analyze the effect of dose and scheduling of intraperitoneally delivered Ad5/3-Δ24. Weekly administration of Ad5/3-Δ24 did not significantly enhance antitumor efficacy over a single treatment. Our results also demonstrate that even a single intraperitoneal injection of only 100 viral particles significantly increased the survival of mice compared with untreated animals. Improved knowledge of adenovirus biology has resulted in creation of more effective oncolytic agents. However, with more potent therapy regimens an increase in unwanted side-effects is also possible. Therefore, inhibiting viral replication when necessary would be beneficial. We evaluated the antiviral activity of chlorpromazine and apigenin on adenovirus replication and associated toxicity in fresh human liver samples, normal cells, and ovarian cancer cells. Further, human xenografts in mice were utilized to evaluate antitumor efficacy, viral replication, and liver toxicity. Our data suggest that these agents can reduce replication of adenoviruses, which could provide a safety switch in case of replication-associated side-effects. In conclusion, we demonstrate that Ad5/3-Δ24 is a useful oncolytic agent for treatment of ovarian cancer either alone or in combination with conventional chemotherapeutic drugs. Insertion of genes encoding prodrug-converting enzymes into the genome of Ad5/3-Δ24 might not lead to enhanced antitumor efficacy with this highly potent oncolytic virus. As a safety feature, viral activity can be inhibited with pharmacological substances. Clinical trials are however needed to confirm if these preclinical results can be translated into efficacy in humans. Promising safety data seen here, and in previous publications suggest that clinical evaluation of the agent is feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a hereditary tumour predisposition syndrome. Its phenotype includes benign cutaneous and uterine leiomyomas (CLM, ULM) with high penetrance and rarer renal cell cancer (RCC), most commonly of papillary type 2 subtype. Over 130 HLRCC families have been identified world-wide but the RCC phenotype seems to concentrate in families from Finland and North America for unknown reasons. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. FH encodes the enzyme fumarase from mitochondrial citric acid cycle. Fumarase enzyme activity or type or site of the FH mutation are unassociated with disease phenotype. The strongest evidence for tumourigenesis mechanism in HLRCC supports a hypoxia inducible factor driven process called pseudohypoxia resulting from accumulation of the fumarase substrate fumarate. In this study, to assess the importance of gene- or exon-level deletions or amplifications of FH in patients with HLRCC-associated phenotypes, multiplex ligation-dependent probe amplification (MLPA) method was used. One novel FH mutation, deletion of exon 1, was found in a Swedish male patient with an evident HLRCC phenotype with CLM, RCC, and a family history of ULM and RCC. Six other patients with CLM and 12 patients with only RCC or uterine leiomyosarcoma (ULMS) remained FH mutation-negative. These results suggest that copy number aberrations of FH or its exons are an infrequent cause of HLRCC and that only co-occurrence of benign tumour types justifies FH-mutation screening in RCC or ULMS patients. Determination of the genomic profile of 11 HLRCC-associated RCCs from Finnish patients was performed by array comparative genomic hybridization. The most common copy number aberrations were gains of 2, 7, and 17 and losses of 13q12.3-q21.1, 14, 18, and X. When compared to aberrations of sporadic papillary RCCs, HLRCC-associated RCCs harboured a distinct DNA copy number profile and lacked many of the changes characterizing the sporadic RCCs. The findings suggest a divergent molecular pathway for tumourigenesis of papillary RCCs in HLRCC. In order to find a genetic modifier of RCC risk in HLRCC, genome-wide linkage and identical by descent (IBD) analysis studies were performed in Finnish HLRCC families with microsatellite marker mapping and SNP-array platforms. The linkage analysis identified only one locus of interest, the FH gene locus in 1q43, but no mutations were found in the genes of the region. IBD analysis yielded no convincing haplotypes shared by RCC patients. Although these results do not exclude the existence of a genetic modifier for RCC risk in HLRCC, they emphasize the role of FH mutations in the malignant tumourigenesis of HLRCC. To study the benign tumours in HLRCC, genome-wide DNA copy number and gene expression profiles of sporadic and HLRCC ULMs were defined with modern SNP- and gene-expression array platforms. The gene expression array suggests novel genes involved in FH-deficient ULM tumourigenesis and novel genes with putative roles in propagation of sporadic ULM. Both the gene expression and copy number profiles of HLRCC ULMs differed from those of sporadic ULMs indicating distinct molecular basis of the FH-deficient HLRCC tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of genes predisposing to tumor syndromes has raised general awareness of tumorigenesis. Genetic testing of tumor susceptibility genes aids the recognition of individuals at increased risk of tumors. Identification of novel predisposing genes enables further studies concerning the classification of potential associated tumors and the definition of target patient group. Pituitary adenomas are common, benign neoplasms accounting for approximately 15% of all intracranial tumors. Accurate incidence estimation is challenging since a great portion of these adenomas are small and asymptomatic. Clinically relevant adenomas, that cause symptoms due to the expansion of the cell mass or the over-secretion of normally produced hormones, occur in approximately one of 1 000 individuals. Although the majority of pituitary adenomas are sporadic, a minority occur as components of familial syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 syndrome is caused by germ-line mutations in the MEN1 gene, whereas most of the CNC patients carry the mutated protein kinase A (PKA) regulatory subunit-1-α (PRKAR1A) gene. Recently, other conditions predisposing to endocrine tumors have been identified: Pituitary Adenoma Predisposition (PAP) and MEN type 4 (MEN4). PAP was originally identified in a genetically homogeneous Finnish population. In a population based cohort from Northern Finland, aryl hydrocarbon receptor-interacting protein (AIP) gene mutations were found in 16% of all patients diagnosed with growth hormone (GH) producing pituitary adenoma, and in 40% of the subset of patients who were diagnosed under the age of 35 years. Since AIP mutations were originally described in a defined, homogeneous population from Northern Finland, it was relevant to study whether mutations also occur in more heterogeneous populations. In patient cohorts with different ethnic origins and variable clinical phenotypes, germ-line AIP mutations were detectable at low frequencies (range 0.8-7.4%). AIP mutation-positive patients were often diagnosed with a GH-producing adenoma at a young age, and usually had no family history of endocrine tumors. The low frequency of AIP mutations in randomly selected patients, and the lack of any family history of pituitary adenomas create a challenge for the identification of PAP patients. Our preliminary study suggests that AIP immunohistochemistry may serve as a pre-screening tool to distinguish between the AIP mutation-negative and the mutation-positive tumors. Tumors of various endocrine glands are components of MEN1 and CNC syndromes. Somatic MEN1 and PRKAR1A mutations in sporadic pituitary adenomas are rare, but occur in some of the other tumors related to these syndromes. The role of AIP mutations in endocrine neoplasia was studied and our results indicated that somatic AIP mutations are rare or non-existent in sporadic tumors of endocrine glands (0 of 111). Furthermore, germ-line AIP mutations in prolactin producing adenomas (2 of 9) confirmed the role of this pituitary tumor type in the PAP phenotype. Thyroid disorders are common in the general population, and the majority of them are sporadic. Interestingly, it has been suggested that thyroid disorders might be more common in PAP families. For this reason we studied germ-line AIP mutations in 93 index cases from familial non-medullary thyroid cancer (NMTC) families. The underlying gene or genes for familial NMTC have not been identified yet. None of the patients had any potentially pathogenic AIP mutation. This suggests that AIP is unlikely to play a role in familial NMTCs. A novel multiple endocrine syndrome was originally described in rats with phenotypic features of human MEN type 1 and 2. Germ-line mutations of cyclin-dependent kinase inhibitor 1B (CDKN1B also known as p27Kip1) gene were reported later in these rats and a germ-line mutation was also identified in one human family with MEN1-like phenotype (later named MEN4). To confirm the importance of this gene’s mutations in humans, we performed a mutation screening in MEN-like patients and in patients with pituitary adenoma. Our results indicate that CDKN1B/p27Kip1 mutations appear in a small portion of MEN1-like patients (one of 36), and that such mutations are rare or non-existent in both familial (0 of 19) and sporadic pituitary adenoma patients (0 of 50). In conclusion, this work strengthens the tumor susceptibility role of AIP and CDKN1B/p27Kip1 in endocrine neoplasia. Clarifying the PAP phenotype facilitates the identification of potential AIP mutation carriers. Genetic counseling can be offered to the relatives and follow-up of the mutation carriers can be organized, hence an earlier diagnosis is feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the most commonly occurring cancer among women, and its incidence is increasing worldwide. Positive family history is a well established risk factor for breast cancer, and it is suggested that the proportion of breast cancer that can be attributed to genetic factors may be as high as 30%. However, all the currently known breast cancer susceptibility genes are estimated to account for 20-30% of familial breast cancer, and only 5% of the total breast cancer incidence. It is thus likely that there are still other breast cancer susceptibility genes to be found. Cellular responses to DNA damage are crucial for maintaining genomic integrity and preventing the development of cancer. The genes operating in DNA damage response signaling network are thus good candidates for breast cancer susceptibility genes. The aim of this study was to evaluate the role of three DNA damage response associated genes, ATM, RAD50, and p53, in breast cancer. ATM, a gene causative for ataxia telangiectasia (A-T), has long been a strong candidate for a breast cancer susceptibility gene because of its function as a key DNA damage signal transducer. We analyzed the prevalence of known Finnish A-T related ATM mutations in large series of familial and unselected breast cancer cases from different geographical regions in Finland. Of the seven A-T related mutations, two were observed in the studied familial breast cancer patients. Additionally, a third mutation previously associated with breast cancer susceptibility was also detected. These founder mutations may be responsible for excess familial breast cancer regionally in Northern and Central Finland, but in Southern Finland our results suggest only a minor effect, if any, of any ATM genetic variants on familial breast cancer. We also screened the entire coding region of the ATM gene in 47 familial breast cancer patients from Southern Finland, and evaluated the identified variants in additional cases and controls. All the identified variants were too rare to significantly contribute to breast cancer susceptibility. However, the role of ATM in cancer development and progression was supported by the results of the immunohistochemical studies of ATM expression, as reduced ATM expression in breast carcinomas was found to correlate with tumor differentiation and hormone receptor status. Aberrant ATM expression was also a feature shared by the BRCA1/2 and the difficult-to-treat ER/PR/ERBB2-triple-negative breast carcinomas. From the clinical point of view, identification of phenotypic and genetic similarities between the BRCA1/2 and the triple-negative breast tumors could have an implication in designing novel targeted therapies to which both of these classes of breast cancer might be exceptionally sensitive. Mutations of another plausible breast cancer susceptibility gene, RAD50, were found to be very rare, and RAD50 can only be making a minor contribution to familial breast cancer predisposition in UK and Southern Finland. The Finnish founder mutation RAD50 687delT seems to be a null allele and may carry a small increased risk of breast cancer. RAD50 is not acting as a classical tumor suppressor gene, but it is possible that RAD50 haploinsufficiency is contributing to cancer. In addition to relatively rare breast cancer susceptibility alleles, common polymorphisms may also be associated with increased breast cancer risk. Furthermore, these polymorphisms may have an impact on the progression and outcome of the disease. Our results suggest no effect of the common p53 R72P polymorphism on familial breast cancer risk or breast cancer risk in the population, but R72P seems to be associated with histopathologic features of the tumors and survival of the patients; 72P homozygous genotype was an independent prognostic factor among the unselected breast cancer patients, with a two-fold increased risk of death. These results present important novel findings also with clinical significance, as codon 72 genotype could be a useful additional prognostic marker in breast cancer, especially among the subgroup of patients with wild-type p53 in their tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy in women in Western countries. It is a heterogeneous disease with varying biological characteristics and aggressiveness. Family history is one of the strongest predisposing factors for breast cancer. The known susceptibility genes explain only around 25% of all familial breast cancers. At least part of the unknown familial aggregation may be caused by several low-penetrance variants that occur commonly in the general population. Cyclins are cell cycle-regulating proteins. Cyclin expression oscillates during the cell cycle and is under strict control. In cancer cells, cyclin expression often becomes deregulated, leading to uncontrolled cell division and proliferation, one of the hallmarks of cancer. In this study, we investigated the role of cyclins in breast cancer predisposition, pathogenesis, and tumor behavior. Cyclin A immunohistochemistry was evaluated both on traditional large sections and on tissue microarrays (TMA). The concordance of the results was good, indicating that TMA is a reliable method for studying cyclin expression in breast cancer. The expression of cyclins D1, E, and B1 was studied among 1348 invasive breast cancers on TMA. Familial BRCA1/2-mutation negative tumors had significantly more often low cyclin E and high cyclin D1 expression than BRCA1/2 related or sporadic tumors. Unique cyclin E and D1 expression patterns among familial non-BRCA1/2 breast cancers may reflect different predisposition and pathogenesis in these groups and help to differentiate mutation-positive from mutation-negative familial cancers. High cyclin E expression was associated with an aggressive breast cancer phenotype and was an independent marker of poor metastasis-free survival. High cyclin D1 was associated with high grade and high proliferation among estrogen receptor (ER)-positive but with low grade and low proliferation among ER-negative breast cancers. Among ER-positive cancers not treated with chemotherapy, high cyclin D1 showed a trend towards shorter metastasis-free survival. These results suggest that different mechanisms may drive proliferation in ER-negative and -positive breast cancers and that cyclin D1 has a particularly important role in tumorigenesis of hormone receptor-positive breast cancer. High cyclin B1 expression was associated with aggressive breast cancer features and had an independent impact on survival. The results suggest that cyclin B1 immunohistochemistry is a method that could easily be adapted for routine use and is an independent prognostic factor, adding specificity to prognostic evaluation conducted with traditional markers. A commonly occurring cyclin D1 gene polymorphism A870G was associated with increased breast cancer risk in a large material of Finnish and Canadian breast cancer patients. The interaction of the high-activity alleles of cyclin D1 gene and estrogen metabolism gene COMT conferred an even higher risk. These results show that cyclin D1 and COMT act synergistically to contribute to breast cancer progression and that individual risk for breast cancer can be altered by the combined effect of polymorphisms with low-penetrance alleles. By investigating critical cell cycle regulator protein cyclins, we revealed new aspects of breast cancer predisposition, pathogenesis, and clinical course.