50 resultados para Hla antigens
em Helda - Digital Repository of University of Helsinki
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Both environmental factors and several predisposing genes are required to generate MS. Despite intensive research these risk factors are still largely unknown, the pathogenesis of MS demyelination is poorly understood, and no curative treatment exists. Both prevalence and familial occurrence of MS are exceptionally high in a Finnish population subisolate, Southern Ostrobothnia, presumably due to enrichment of predisposing genetic variants within this region. Previous linkage scan on MS pedigrees from Southern Ostrobothnia detected three main MS loci on chromosomes 5p, 6p (HLA) and 17q. Linkage studies in other populations have also provided independent evidence for the location of MS susceptibility genes in these regions. Further, these loci are syntenic to the experimental autoimmune encephalomyelitis (EAE) susceptibility loci of rodents. In this thesis work an effort was made to localize MS predisposing alleles of the linked loci outside the HLA region by studying familial MS cases from the Southern Ostrobothnia isolate. Analysis of the 5p locus revealed one region, flanking the complement component 7 (C7) gene. The identified relatively rare haplotype seems to have a fairly large effect on genetic susceptibility of MS (frequency MS 12%, controls 4%; p=0.000003, OR=2.73). Evidence for association with alleles of the region and MS was seen also in more heterogeneous populations. Convincingly, plasma C7 protein levels and complement activity correlated with the risk haplotype identified. The finding stimulated us to study other complement cascade genes in MS. No evidence for association could be observed with the complement component coding genes outside 5p. A scan of the 17q locus provided evidence for association with variants of the protein kinase C alpha (PRKCA) gene (p=0.0001). Modest evidence for association with PRKCA was observed also in Canadian MS families. Finally we used a candidate gene based approach to identify potential MS loci. Mutations of DAP12 and TREM2 cause a recessively inherited CNS white matter disease PLOSL. Interestingly, DAP12 and TREM2 are located in MS regions on 6p and 19q, and we tested them as potential candidate genes in the Finnish MS sample. No evidence for association with MS was observed. This thesis provides an example of how extended families from special populations can be utilized in fine-mapping of the linked loci. A first relatively rare MS variant was identified utilizing the strength of a Finnish population subisolate. This variant seems to have an effect on activity of the complement system, which has previously been suggested to have an important role in the pathogenesis of MS.
Resumo:
Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.
Resumo:
Aims: To gain insight on the immunological processes behind cow’s milk allergy (CMA) and the development of oral tolerance. To furthermore investigate the associations of HLA II and filaggrin genotypes with humoral responses to early oral antigens. Methods: The study population was from a cohort of 6209 healthy, full-term infants who in a double-blind randomized trial received supplementary feeding at maternity hospitals (mean duration 4 days): cow’s milk (CM) formula, extensively hydrolyzed whey formula or donor breast milk. Infants who developed CM associated symptoms that subsided during elimination diet (n=223) underwent an open oral CM challenge (at mean age 7 months). The challenge was negative in 112, and in 111 it confirmed CMA, which was IgE-mediated in 83. Patients with CMA were followed until recovery, and 94 of them participated in a follow-up study at age 8-9 years. We investigated serum samples at diagnosis (mean age 7 months, n=111), one year later (19 months, n=101) and at follow-up (8.6 years, n=85). At follow-up, also 76 children randomly selected from the original cohort and without CM associated symptoms were included. We measured CM specific IgE levels with UniCAP (Phadia, Uppsala, Sweden), and β-lactoglobulin, α-casein and ovalbumin specific IgA, IgG1, IgG4 and IgG levels with enzyme-linked immunosorbent assay in sera. We applied a microarray based immunoassay to measure the binding of IgE, IgG4 and IgA serum antibodies to sequential epitopes derived from five major CM proteins at the three time points in 11 patients with active IgE-mediated CMA at age 8-9 years and in 12 patients who had recovered from IgE-mediated CMA by age 3 years. We used bioinformatic methods to analyze the microarray data. We studied T cell expression profile in peripheral blood mononuclear cell (PBMC) samples from 57 children aged 5-12 years (median 8.3): 16 with active CMA, 20 who had recovered from CMA by age 3 years, 21 non-atopic control subjects. Following in vitro β-lactoglobulin stimulation, we measured the mRNA expression in PBMCs of 12 T-cell markers (T-bet, GATA-3, IFN-γ, CTLA4, IL-10, IL-16, TGF-β, FOXP3, Nfat-C2, TIM3, TIM4, STIM-1) with quantitative real time polymerase chain reaction, and the protein expression of CD4, CD25, CD127, FoxP3 with flow cytometry. To optimally distinguish the three study groups, we performed artificial neural networks with exhaustive search for all marker combinations. For genetic associations with specific humoral responses, we analyzed 14 HLA class II haplotypes, the PTPN22 1858 SNP (R620W allele) and 5 known filaggrin null mutations from blood samples of 87 patients with CMA and 76 control subjects (age 8.0-9.3 years). Results: High IgG and IgG4 levels to β-lactoglobulin and α-casein were associated with the HLA (DR15)-DQB1*0602 haplotype in patients with CMA, but not in control subjects. Conversely, (DR1/10)-DQB1*0501 was associated with lower IgG and IgG4 levels to these CM antigens, and to ovalbumin, most significantly among control subjects. Infants with IgE-mediated CMA had lower β -lactoglobulin and α-casein specific IgG1, IgG4 and IgG levels (p<0.05) at diagnosis than infants with non-IgE-mediated CMA or control subjects. When CMA persisted beyond age 8 years, CM specific IgE levels were higher at all three time points investigated and IgE epitope binding pattern remained stable (p<0.001) compared with recovery from CMA by age 3 years. Patients with persisting CMA at 8-9 years had lower serum IgA levels to β-lactoglobulin at diagnosis (p=0.01), and lower IgG4 levels to β-lactoglobulin (p=0.04) and α-casein (p=0.05) at follow-up compared with patients who recovered by age 3 years. In early recovery, signal of IgG4 epitope binding increased while that of IgE decreased over time, and binding patterns of IgE and IgG4 overlapped. In T cell expression profile in response to β –lactoglobulin, the combination of markers FoxP3, Nfat-C2, IL-16, GATA-3 distinguished patients with persisting CMA most accurately from patients who had become tolerant and from non-atopic subjects. FoxP3 expression at both RNA and protein level was higher in children with CMA compared with non-atopic children. Conclusions: Genetic factors (the HLA II genotype) are associated with humoral responses to early food allergens. High CM specific IgE levels predict persistence of CMA. Development of tolerance is associated with higher specific IgA and IgG4 levels and lower specific IgE levels, with decreased CM epitope binding by IgE and concurrent increase in corresponding epitope binding by IgG4. Both Th2 and Treg pathways are activated upon CM antigen stimulation in patients with CMA. In the clinical management of CMA, HLA II or filaggrin genotyping are not applicable, whereas the measurement of CM specific antibodies may assist in estimating the prognosis.
Resumo:
Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.
Resumo:
More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.
Resumo:
In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.
Resumo:
The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.
Resumo:
Human herpesvirus 6 (HHV-6) was identified from patients with HIV and lymphoproliferative diseases in 1986. It is a β-herpesvirus and is divided into two subgroups, variants A and B. HHV-6 variant B is the cause of exanthema subitum, while variant A has not yet definitely proven to cause any disease. HHV-6, especially variant A, is a highly neurotropic virus and has been associated with many diseases of the central nervous system (CNS) such as encephalitis and multiple sclerosis (MS). The present studies were aimed to elucidate the role of HHV-6 and its two variants in neurological infections. Special attention was given to study the possible role of HHV-6 in the pathogenesis of MS. We studied the expression of HHV-6 antigens using immunohistochemistry in brain autopsy samples from patients with MS and controls. HHV-6 antigen was identified in 70% of MS specimens whereas 30% of control specimens expressed HHV-6 antigen. Serum and cerebrospinal fluid (CSF) samples were collected from patients with MS and patients with other neurological diseases (OND) from patients visiting Helsinki University Central Hospital Neurological Outpatient Clinic during the years 2003 and 2004. In addition, we studied 53 children with suspected encephalitis. We developed an immunofluorescence IgG-avidity assay for the detection of primary HHV-6A and HHV-6B infection. For HHV-6B antibodies, no differences were observed between patients with MS and OND. For HHV-6A both seroprevalence and mean titers were significantly higher in MS compared to OND. HHV-6A low-avidity IgG antibodies, suggestive of primary infection, were found in serum of two, three and one patient with definite MS, possible MS and OND, respectively. From pediatric patients with suspected encephalitis, six serum samples (11.3%) contained low-avidity antibodies, indicating a temporal association between HHV-6A infection and onset of encephalitis. Three out of 26 patients with CDMS and four out of 19 patients with CPMS had HHV-6 antibodies in their CSF compared to none of the patients with OND (p=0.06 and p=0.01, respectively). Two patients with CDMS and three patients with CPMS appeared to have specific intrathecal synthesis of HHV-6A antibodies. In addition, oligoclonal bands (OCB) were observed in the CSF of five out of nine MS patients tested, and in two the OCBs reacted specifically with HHV-6 antigen, which is a novel finding. These results indicate HHV-6 specific antibody production in the CNS and suggest that there is a subset of MS patients with an active or chronic HHV-6A infection in the CNS that might be involved in the pathogenesis of MS. Our studies suggest that HHV-6 is an important causative or associated virus in some neurological infections, such as encephalitis and it might contribute to the development of MS, at least in some cases. In conclusion, HHV-6 is a neurotropic virus that should be taken into consideration when studying acute and chronic CNS diseases of unknown origin.
Resumo:
End-stage renal disease is an increasingly common pathologic condition, with a current incidence of 87 per million inhabitants in Finland. It is the end point of various nephropathies, most common of which is the diabetic nephropathy. This thesis focuses on exploring the role of nephrin in the pathogenesis of diabetic nephropathy. Nephrin is a protein of the glomerular epithelial cell, or podocyte, and it appears to have a crucial function as a component of the filtration slit diaphragm in the kidney glomeruli. Mutations in the nephrin gene NPHS1 lead to massive proteinuria. Along with the originally described location in the podocyte, nephrin has now been found to be expressed in the brain, testis, placenta and pancreatic beta cells. In type 1 diabetes, the fundamental pathologic event is the autoimmune destruction of the beta cells. Autoantibodies against various beta cell antigens are generated during this process. Due to the location of nephrin in the beta cell, we hypothesized that patients with type 1 diabetes may present with nephrin autoantibodies. We also wanted to test whether such autoantibodies could be involved in the pathogenesis of diabetic nephropathy. The puromycin aminonucleoside nephrosis model in the rat, the streptozotocin model in the rat, and the non-obese diabetic mice were studied by immunochemical techniques, in situ -hybridization and the polymerase chain reaction -based methods to resolve the expression of nephrin mRNA and protein in experimental nephropathies. To test the effect of antiproteinuric therapies, streptozotocin-treated rats were also treated with aminoguanidine or perindopril. To detect nephrin antibodies we developed a radioimmunoprecipitation assay and analyzed follow-up material of 66 patients with type 1 diabetes. In the puromycin aminonucleoside nephrosis model, the nephrin expression level was uniformly decreased together with the appearance of proteinuria. In the streptozotocin-treated rats and in non-obese diabetic mice, the nephrin mRNA and protein expression levels were seen to increase in the early stages of nephropathy. However, as observed in the streptozotocin rats, in prolonged diabetic nephropathy the expression level decreased. We also found out that treatment with perindopril could not only prevent proteinuria but also a decrease in nephrin expression in streptozotocin-treated rats. Aminoguanidine did not have an effect on nephrin expression, although it could attenuate the proteinuria. Circulating antibodies to nephrin in patients with type 1 diabetes were found, although there was no correlation with the development of diabetic nephropathy. At diagnosis, 24% of the patients had these antibodies, while at 2, 5 and 10 years of disease duration the respective proportions were 23%, 14% and 18%. During the total follow-up of 16 to 19 years after diagnosis of diabetes, 14 patients had signs of nephropathy and 29% of them tested positive for nephrin autoantibodies in at least one sample. In conclusion, this thesis work could show changes of nephrin expression along with the development of proteinuria. The autoantibodies against nephrin are likely generated in the autoimmune process leading to type 1 diabetes. However, according to the present work it is unlikely that these autoantibodies are contributing significantly to the development of diabetic nephropathy.