12 resultados para Habitation sensible
em Helda - Digital Repository of University of Helsinki
Resumo:
The aim of this study is to examine the relationship of the Roman villa to its environment. The villa was an important feature of the countryside intended both for agricultural production and for leisure. Manuals of Roman agriculture give instructions on how to select a location for an estate. The ideal location was a moderate slope facing east or south in a healthy area and good neighborhood, near good water resources and fertile soils. A road or a navigable river or the sea was needed for transportation of produce. A market for selling the produce, a town or a village, should have been nearby. The research area is the surroundings of the city of Rome, a key area for the development of the villa. The materials used consist of archaeological settlement sites, literary and epigraphical evidence as well as environmental data. The sites include all settlement sites from the 7th century BC to 5th century AD to examine changes in the tradition of site selection. Geographical Information Systems were used to analyze the data. Six aspects of location were examined: geology, soils, water resources, terrain, visibility/viewability and relationship to roads and habitation centers. Geology was important for finding building materials and the large villas from the 2nd century BC onwards are close to sources of building stones. Fertile soils were sought even in the period of the densest settlement. The area is rich in water, both rainfall and groundwater, and finding a water supply was fairly easy. A certain kind of terrain was sought over very long periods: a small spur or ridge shoulder facing preferably south with an open area in front of the site. The most popular villa resorts are located on the slopes visible from almost the entire Roman region. A visible villa served the social and political aspirations of the owner, whereas being in the villa created a sense of privacy. The area has a very dense road network ensuring good connectivity from almost anywhere in the region. The best visibility/viewability, dense settlement and most burials by roads coincide, creating a good neighborhood. The locations featuring the most qualities cover nearly a quarter of the area and more than half of the settlement sites are located in them. The ideal location was based on centuries of practical experience and rationalized by the literary tradition.
Resumo:
The research is related to the Finnish Jabal Harun Project (FJHP), which is part of the research unit directed by Professor Jaakko Frösén. The project consists of two interrelated parts: the excavation of a Byzantine monastery/pilgrimage centre on Jabal Harun, and a multiperiod archaeological survey of the surrounding landscape. It is generally held that the Near Eastern landscape has been modified by millennia of human habitation and activity. Past climatic changes and human activities could be expected to have significantly changed also the landscape of the Jabal Harun area. Therefore it was considered that a study of erosion in the Jabal Harun area could shed light on the environmental and human history of the area. It was hoped that it would be possible to connect the results of the sedimentological studies either to wider climatic changes in the Near East, or to archaeologically observable periods of human activity and land use. As evidence of some archaeological periods is completely missing from the Jabal Harun area, it was also of interest whether catastrophic erosion or unfavourable environmental change, caused either by natural forces or by human agency, could explain the gaps in the archaeological record. Changes in climate and/or land-use were expected to be reflected in the sedimentary record. The field research, carried out as part of the FJHP survey fieldwork, included the mapping of wadi terraces and cleaning of sediment profiles which were recorded and sampled for laboratory analyses of facies and lithology. To obtain a chronology for the sedimentation and erosion phases also OSL (optically stimulated luminescence) dating samples were collected. The results were compared to the record of the Near Eastern palaeoclimate, and to data from geoarchaeological studies in central and southern Jordan. The picture of the environmental development was then compared to the human history in the area, based on archaeological evidence from the FJHP survey and the published archaeological research in the Petra region, and the question of the relationship between human activity and environmental change was critically discussed. Using the palaeoclimatic data and the results from geoarchaeological studies it was possible to outline the environmental development in the Jabal Harun area from the Pleistocene to the present.It is appears that there was a phase of accumulation of sediment before the Middle Palaeolithic period, possibly related to tectonic movement. This phase was later followed by erosion, tentatively suggested to have taken place during the Upper Palaeolithic. A period of wadi aggradation probably occurred during the Late Glacial and continued until the end of the Pleistocene, followed by significant channel degradation, attributed to increased rainfall during the Early Holocene. It seems that during the later Holocene channel incision has been dominant in the Jabal Harûn area although there have been also small-scale channel aggradation phases, two of which were OSL-dated to around 4000-3000 BP and 2400-2000 BP. As there is no evidence of tectonic movements in the Jabal Harun area after the early Pleistocene, it is suggested that climate change and human activity have been the major causes of environmental change in the area. At a brief glance it seems that many of the changes in the settlement and land use in the Jabal Harun area can be explained by climatic and environmental conditions. However, the responses of human societies to environmental change are dependent on many factors. Therefore an evaluation of the significance of environmental, cultural, socio-economic and political factors is needed to decide whether certain phenomena are environmentally induced. Comparison with the wider Petra region is also needed to judge whether the phenomena are characteristic of the Jabal Harun area only, or can they be connected to social, political and economic development over a wider area.
Resumo:
It has been suggested that semantic information processing is modularized according to the input form (e.g., visual, verbal, non-verbal sound). A great deal of research has concentrated on detecting a separate verbal module. Also, it has traditionally been assumed in linguistics that the meaning of a single clause is computed before integration to a wider context. Recent research has called these views into question. The present study explored whether it is reasonable to assume separate verbal and nonverbal semantic systems in the light of the evidence from event-related potentials (ERPs). The study also provided information on whether the context influences processing of a single clause before the local meaning is computed. The focus was on an ERP called N400. Its amplitude is assumed to reflect the effort required to integrate an item to the preceding context. For instance, if a word is anomalous in its context, it will elicit a larger N400. N400 has been observed in experiments using both verbal and nonverbal stimuli. Contents of a single sentence were not hypothesized to influence the N400 amplitude. Only the combined contents of the sentence and the picture were hypothesized to influence the N400. The subjects (n = 17) viewed pictures on a computer screen while hearing sentences through headphones. Their task was to judge the congruency of the picture and the sentence. There were four conditions: 1) the picture and the sentence were congruent and sensible, 2) the sentence and the picture were congruent, but the sentence ended anomalously, 3) the picture and the sentence were incongruent but sensible, 4) the picture and the sentence were incongruent and anomalous. Stimuli from the four conditions were presented in a semi-randomized sequence. Their electroencephalography was simultaneously recorded. ERPs were computed for the four conditions. The amplitude of the N400 effect was largest in the incongruent sentence-picture -pairs. The anomalously ending sentences did not elicit a larger N400 than the sensible sentences. The results suggest that there is no separate verbal semantic system, and that the meaning of a single clause is not processed independent of the context.
Resumo:
This study examines the narrative construction of consumerism in Finnish consumer culture in the early 21st century. The objects of the study are consumer life stories and essays on environmentally friendly consumption, written by 15-19-year-old high school students. Moreover, group discussions were used as additional research material. The data was gathered at five high schools in different areas of Finland. Young people's consumer narratives are interpreted through cultural stories and consumer ethos such as self-control, gratification and green consumerism. The narrative research approach is used to analyse what types of consumer positions these young people construct in stories on their own consumer history, and what kinds of ideas and thought patterns they construct on green consumerism. The study creates a multifaceted image of young people as agents in consumer society. They construct archetypical stories of wastrels and scrooges, as well as prudent and environmentally friendly consumers. Consumption and expenditure are however mostly a continuous battle between self-control and giving in to gratification. This reality is illustrated among other things by clever expressions invented by young people, such as Carefree Pennywise, Prudent Hedonist and Wasteful Scrooge. In their narratives, young people also analyse the usefulness - or uselessness - of their decisions on consumption, as well as develop themselves into controlling and sensible consumers. This kind of virtuous consumer allows him/herself the joy and the gratification of consumption, as long as these are "kept in check". One's view of expenditure and consumption is not permanent. Consumerism may alter with time. A wastrel may grow up to be a young person in control of their desires, or a thrifty child may awaken to the pleasures of consumption in their teens. Consumerism may also be polyphonic: it may simultaneously - and even uncomplicatedly - be constructed upon the discourses of wastefulness, prudence, gratification and green consumerism. Young people allow for gratification to form a part of green consumerism, too: it is not simply restrictive self-denial. They also see many hurdles in the way of green consumerism, such as the elevated price of ecological products, and the difficulties of green consumer practices. The stories also show the gender division in green consumerism. For young men, ecological considerations offer elements for the construction of consumerism only on the very rare occasion, whereas striving for day-to-day green practices is typical for young women.
Resumo:
Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.
Resumo:
The thesis consists of five international congress papers and a summary with an introduction. The overarching aim of the studies and the summary is to examine the inner coherency of the theological and anthropological thinking of Gregory of Nyssa (331-395). To the issue is applied an "apophatic approach" with a "Christological focus". It is suggested that the coherency is to be found from the Christological concept of unity between "true God" and "true man" in the one person of Jesus Christ. Gregory is among the first to make a full recognition of two natures of Christ, and to use this recognition systematically in his writings. The aim of the studies is pursued by the method of "identification", a combination of the modern critical "problematic method" and Gregory's own aphairetic method of "following" (akolouthia). The preoccupation with issues relating to the so-called Hellenization of Christianity in the patristic era was strong in the twentieth-century Gregory scholarship. The most discussed questions have been the Greek influence in his thought and his philosophical sources. In the five articles of the thesis it is examined how Gregory's thinking stands in its own right. The manifestly apophatic character of his theological thinking is made a part of the method of examining his thought according to the principles of his own method of following. The basic issue concerning the relation of theology and anthropology is discussed in the contexts of his central Trinitarian, anhtropological, Christological and eschatological sources. In the summary the Christocentric integration of Gregory's thinking is discussed also in relation to the issue of the alledged Hellenization. The main conclusion of the thesis concerns the concept of theology in Gregory. It is not indebted to the classical concept of theology as metaphysics or human speculation of God. Instead, it is founded to the traditional Judeo-Christian idea of God who speaks with his people face to face. In Gregory, theologia connotes the oikonomia of God's self-revelation. It may be regarded as the state of constant expression of love between the Creator and his created image. In theology, the human person becomes an image of the Word by which the Father expresses his love to "man" whom he loves as his own Son. Eventually the whole humankind, as one, gives the divine Word a physical - audible and sensible - Body. Humankind then becomes what theology is. The whole humanity expresses divine love by manifesting Christ in words and deeds, singing in one voice to the glory of the Father, the Son and the Holy Spirit.
Resumo:
Wild salmon stocks in the northern Baltic rivers became endangered in the second half of the 20th century, mainly due to recruitment overfishing. As a result, supplementary stocking was widely practised, and supplementation of the Tornionjoki salmon stock took place over a 25 year period until 2002. The stock has been closely monitored by electrofishing, smolt trapping, mark-recapture studies, catch samples and catch surveys. Background information on hatchery-reared stocked juveniles was also collected for this study. Bayesian statistics was applied to the data as this method offers the possibility of bringing prior information into the analysis and an advanced ability for incorporating uncertainty, and also provides probabilities for a multitude of hypotheses. Substantial divergences between reared and wild Tornionjoki salmon were identified in both demographic and phenological characteristics. The divergences tended to be larger the longer the duration spent in hatchery and the more favourable the hatchery conditions were for fast growth. Differences in environment likely induced most of the divergences, but selection of brood fish might have resulted in genotypic divergence in maturation age of reared salmon. Survival of stocked 1-year old juveniles to smolt varied from about 10% to about 25%. Stocking on the lower reach of the river seemed to decrease survival, and the negative effect of stocking volume on survival raises the concern of possible similar effects on the extant wild population. Post-smolt survival of wild Tornionjoki smolts was on average two times higher than that of smolts stocked as parr and 2.5 times higher than that of stocked smolts. Smolts of different groups showed synchronous variation and similar long-term survival trends. Both groups of reared salmon were more vulnerable to offshore driftnet and coastal trapnet fishing than wild salmon. Average survival from smolt to spawners of wild salmon was 2.8 times higher than that of salmon stocked as parr and 3.3 times higher than that of salmon stocked as smolts. Wild salmon and salmon stocked as parr were found to have similar lifetime survival rates, while stocked smolts have a lifetime survival rate over 4 times higher than the two other groups. If eggs are collected from the wild brood fish, stocking parr would therefore not be a sensible option. Stocking smolts instead would create a net benefit in terms of the number of spawners, but this strategy has serious drawbacks and risks associated with the larger phenotypic and demographic divergences from wild salmon. Supplementation was shown not to be the key factor behind the recovery of the Tornionjoki and other northern Baltic salmon stocks. Instead, a combination of restrictions in the sea fishery and simultaneous occurrence of favourable natural conditions for survival were the main reasons for the revival in the 1990 s. This study questions the effectiveness of supplementation as a conservation management tool. The benefits of supplementation seem at best limited. Relatively high occurrences of reared fish in catches may generate false optimism concerning the effects of supplementation. Supplementation may lead to genetic risks due to problems in brood fish collection and artificial rearing with relaxed natural selection and domestication. Appropriate management of fisheries is the main alternative to supplementation, without which all other efforts for long-term maintenance of a healthy fish resource fail.
Resumo:
Lakes are an important component of ecosystem carbon cycle through both organic carbon sequestration and carbon dioxide and methane emissions, although they cover only a small fraction of the Earth's surface area. Lake sediments are considered to be one of rather perma-nent sinks of carbon in boreal regions and furthermore, freshwater ecosystems process large amounts of carbon originating from terrestrial sources. These carbon fluxes are highly uncer-tain especially in the changing climate. -- The present study provides a large-scale view on carbon sources and fluxes in boreal lakes situated in different landscapes. We present carbon concentrations in water, pools in lake se-diments, and carbon gas (CO2 and CH4) fluxes from lakes. The study is based on spatially extensive and randomly selected Nordic Lake Survey (NLS) database with 874 lakes. The large database allows the identification of the various factors (lake size, climate, and catchment land use) determining lake water carbon concentrations, pools and gas fluxes in different types of lakes along a latitudinal gradient from 60oN to 69oN. Lakes in different landscapes vary in their carbon quantity and quality. Carbon (C) content (total organic and inorganic carbon) in lakes is highest in agriculture and peatland dominated areas. In peatland rich areas organic carbon dominated in lakes but in agricultural areas both organic and inorganic C concentrations were high. Total inorganic carbon in the lake water was strongly dependent on the bedrock and soil quality in the catchment, especially in areas where human influence in the catchment is low. In inhabited areas both agriculture and habitation in the catchment increase lake TIC concentrations, since in the disturbed soils both weathering and leaching are presumably more efficient than in pristine areas. TOC concentrations in lakes were related to either catchment sources, mainly peatlands, or to retention in the upper watercourses. Retention as a regulator of the TOC concentrations dominated in southern Finland, whereas the peatland sources were important in northern Finland. The homogeneous land use in the north and the restricted catchment sources of TOC contribute to the close relationship between peatlands and the TOC concentrations in the northern lakes. In southern Finland the more favorable climate for degradation and the multiple sources of TOC in the mixed land use highlight the importance of retention. Carbon processing was intensive in the small lakes. Both CO2 emission and the Holocene C pool in sediments per square meter of the lake area were highest in the smallest lakes. How-ever, because the total area of the small lakes on the areal level is limited, the large lakes are important units in C processing in the landscape. Both CO2 and CH4 concentrations and emissions were high in eutrophic lakes. High availability of nutrients and the fresh organic matter enhance degradation in these lakes. Eutrophic lakes are often small and shallow, enabling high contact between the water column and the sediment. At the landscape level, the lakes in agricultural areas are often eutrophic due to fertile soils and fertilization of the catchments, and therefore they also showed the highest CO2 and CH4 concentrations. Export from the catchments and in-lake degradation were suggested to be equally important sources of CO2 and CH4 in fall when the lake water column was intensively mixed and the transport of sub-stances from the catchment was high due to the rainy season. In the stagnant periods, especially in the winter, in-lake degradation as a gas source was highlighted due to minimal mixing and limited transport of C from the catchment. The strong relationship between the annual CO2 level of lakes and the annual precipitation suggests that climate change can have a major impact on C cycling in the catchments. Increase in precipitation enhances DOC export from the catchments and leads to increasing greenhouse gas emissions from lakes. The total annual CO2 emission from Finnish lakes was estimated to be 1400 Gg C a-1. The total lake sediment C pool in Finland was estimated to be 0.62 Pg, giving an annual sink in Finnish lakes of 65 Gg C a-1.
Resumo:
The purpose of this study was to evaluate the use of sentinel node biopsy (SNB) in the axillary nodal staging in breast cancer. A special interest was in sentinel node (SN) visualization, intraoperative detection of SN metastases, the feasibility of SNB in patients with pure tubular carcinoma (PTC) and in those with ductal carcinoma in situ (DCIS) in core needle biopsy (CNB) and additionally in the detection of axillary recurrences after tumour negative SNB. Patients and methods. 1580 clinically stage T1-T2 node-negative breast cancer patients, who underwent lymphoscintigraphy (LS), SNB and breast surgery between June 2000 - 2004 at the Breast Surgery Unit. The CNB samples were obtained from women, who participated the biennial, population based mammography screening at the Mammography Screening Centre of Helsinki 2001 - 2004.In the follow- up, a cohort of 205 patients who avoided AC due to negative SNB findings were evaluated using ultrasonography one and three years after breast surgery. Results. The visualization rate of axillary SNs was not enhanced by adjusting radioisotope doses according to BMI. The sensitivity of the intraoperative diagnosis of SN metastases of invasive lobular carcinoma (ILC) was higher, 87%, with rapid, intraoperative immunohistochemistry (IHC) group compared to 66% without it. The prevalence of tumour positive SN findings was 27% in the 33 patients with breast tumours diagnosed as PTC. The median histological tumour size was similar in patients with or without axillary metastases. After the histopathological review, six out of 27 patients with true PTC had axillary metastases, with no significant change in the risk factors for axillary metastases. Of the 67 patients with DCIS in the preoperative percutaneous biopsy specimen , 30% had invasion in the surgical specimen. The strongest predictive factor for invasion was the visibility of the lesion in ultrasound. In the three year follow-up, axillary recurrence was found in only two (0.5%) of the total of 383 ultrasound examinations performed during the study, and only one of the 369 examinations revealed cancer. None of the ultrasound examinations were false positive, and no study participant was subjected to unnecessary surgery due to ultrasound monitoring. Conclusions. Adjusting the dose of the radioactive tracer according to patient BMI does not increase the visualization rate of SNs. The intraoperative diagnosis of SN metastases is enhanced by rapid IHC particularly in patients with ILC. SNB seems to be a feasible method for axillary staging of pure tubular carcinoma in patients with a low prevalence of axillary metatastases. SNB also appears to be a sensible method in patients undergoing mastectomy due to DCIS in CNB. It also seems useful in patients with lesions visible in breast US. During follow-up, routine monitoring of the ipsilateral axilla using US is not worthwhile among breast cancer patients who avoided AC due to negative SN findings.
Resumo:
There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.
Resumo:
Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.