3 resultados para HYDROGEN FUEL CELLS

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research has been prompted by an interest in the atmospheric processes of hydrogen. The sources and sinks of hydrogen are important to know, particularly if hydrogen becomes more common as a replacement for fossil fuel in combustion. Hydrogen deposition velocities (vd) were estimated by applying chamber measurements, a radon tracer method and a two-dimensional model. These three approaches were compared with each other to discover the factors affecting the soil uptake rate. A static-closed chamber technique was introduced to determine the hydrogen deposition velocity values in an urban park in Helsinki, and at a rural site at Loppi. A three-day chamber campaign to carry out soil uptake estimation was held at a remote site at Pallas in 2007 and 2008. The atmospheric mixing ratio of molecular hydrogen has also been measured by a continuous method in Helsinki in 2007 - 2008 and at Pallas from 2006 onwards. The mean vd values measured in the chamber experiments in Helsinki and Loppi were between 0.0 and 0.7 mm s-1. The ranges of the results with the radon tracer method and the two-dimensional model were 0.13 - 0.93 mm s-1 and 0.12 - 0.61 mm s-1, respectively, in Helsinki. The vd values in the three-day campaign at Pallas were 0.06 - 0.52 mm s-1 (chamber) and 0.18 - 0.52 mm s-1 (radon tracer method and two-dimensional model). At Kumpula, the radon tracer method and the chamber measurements produced higher vd values than the two-dimensional model. The results of all three methods were close to each other between November and April, except for the chamber results from January to March, while the soil was frozen. The hydrogen deposition velocity values of all three methods were compared with one-week cumulative rain sums. Precipitation increases the soil moisture, which decreases the soil uptake rate. The measurements made in snow seasons showed that a thick snow layer also hindered gas diffusion, lowering the vd values. The H2 vd values were compared to the snow depth. A decaying exponential fit was obtained as a result. During a prolonged drought in summer 2006, soil moisture values were lower than in other summer months between 2005 and 2008. Such conditions were prevailing in summer 2006 when high chamber vd values were measured. The mixing ratio of molecular hydrogen has a seasonal variation. The lowest atmospheric mixing ratios were found in the late autumn when high deposition velocity values were still being measured. The carbon monoxide (CO) mixing ratio was also measured. Hydrogen and carbon monoxide are highly correlated in an urban environment, due to the emissions originating from traffic. After correction for the soil deposition of H2, the slope was 0.49±0.07 ppb (H2) / ppb (CO). Using the corrected hydrogen-to-carbon-monoxide ratio, the total hydrogen load emitted by Helsinki traffic in 2007 was 261 t (H2) a-1. Hydrogen, methane and carbon monoxide are connected with each other through the atmospheric methane oxidation process, in which formaldehyde is produced as an important intermediate. The photochemical degradation of formaldehyde produces hydrogen and carbon monoxide as end products. Examination of back-trajectories revealed long-range transportation of carbon monoxide and methane. The trajectories can be grouped by applying cluster and source analysis methods. Thus natural and anthropogenic emission sources can be separated by analyzing trajectory clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) transport lactate and protons across cell membranes. During intense exercise, lactate and protons accumulate in the exercising muscle and are transported to the plasma. In the horse, MCTs are responsible for the majority of lactate and proton removal from exercising muscle, and are therefore also the main mechanism to hinder the decline in pH in muscle cells. Two isoforms, MCT1 and MCT4, which need an ancillary protein CD147, are expressed in equine muscle. In the horse, as in other species, MCT1 is predominantly expressed in oxidative fibres, where its likely role is to transport lactate into the fibre to be used as a fuel at rest and during light work, and to remove lactate during intensive exercise when anaerobic energy production is needed. The expression of CD147 follows the fibre type distribution of MCT1. These proteins were detected in both the cytoplasm and sarcolemma of muscle cells in the horse breeds studied: Standardbred and Coldblood trotters. In humans, training increases the expression of both MCT1 and MCT4. In this study, the proportion of oxidative fibres in the muscle of Norwegian-Swedish Coldblood trotters increased with training. Simultaneously, the expression of MCT1 and CD147, measured immunohistochemically, seemed to increase more in the cytoplasm of oxidative fibres than in the fast fibre type IIB. Horse MCT4 antibody failed to work in immunohistochemistry. In the future, a quantitative method should be introduced to examine the effect of training on muscle MCT expression in the horse. Lactate can be taken up from plasma by red blood cells (RBCs). In horses, two isoforms, MCT1 and MCT2, and the ancillary protein CD147 are expressed in RBC membranes. The horse is the only species studied in which RBCs have been found to express MCT2, and the physiological role of this protein in RBCs is unknown. The majority of horses express all three proteins, but 10-20% of horses express little or no MCT1 or CD147. This leads to large interindividual variation in the capacity to transport lactate into RBCs. Here, the expression level of MCT1 and CD147 was bimodally distributed in three studied horse breeds: Finnhorse, Standardbred and Thoroughbred. The level of MCT2 expression was distributed unimodally. The expression level of lactate transporters could not be linked to performance markers in Thoroughbred racehorses. In the future, better performance indexes should be developed to better enable the assessment of whether the level of MCT expression affects athletic performance. In human subjects, several mutations in MCT1 have been shown to cause decreased lactate transport activity in muscle and signs of myopathy. In the horse, two amino acid sequence variations, one of which was novel, were detected in MCT1 (V432I and K457Q). The mutations found in horses were in different areas compared to mutations found in humans. One mutation (M125V) was detected in CD147. The mutations found could not be linked with exercise-induced myopathy. MCT4 cDNA was sequenced for the first time in the horse, but no mutations could be detected in this protein.