26 resultados para HEAVY-FLAVOR
em Helda - Digital Repository of University of Helsinki
Resumo:
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.
Resumo:
We present a measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with tt̅ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb-1 of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5±5.3 events, we measure a production cross section of 9.1±1.6 pb.
Resumo:
We present a measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with tt̅ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb-1 of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5±5.3 events, we measure a production cross section of 9.1±1.6 pb.
Resumo:
We present a measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with $\ttbar$ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF Run II data sample corresponding to $2 \mathrm{fb^{-1}}$ of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of $79.5\pm5.3$ events, we measure a production cross section of $9.1\pm 1.6 \mathrm{pb}$.
Resumo:
We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.
Resumo:
This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Western art music may be applied to heavy metal. It seems evident that in heavy metal some chord structures appear far more frequently than others. It is suggested here that the fundamental reason for this is the use of guitar distortion effect. Subsequently, theories as to how and under what principles heavy metal is constructed need to be put under discussion; analytical models regarding the classification of consonance and dissonance and chord categorization are here revised to meet the common practices of this music. It is evident that heavy metal is not an isolated style of music; it is seen here as a cultural fusion of various musical styles. Moreover, it is suggested that the theoretical background to the construction of Western music and its analysis can offer invaluable insights to heavy metal. However, the analytical methods need to be reformed to some extent to meet the characteristics of the music. This reformation includes an accommodation of linear and functional theories that has been found rather rarely in music theory and musicology.
Resumo:
In technicolor theories the scalar sector of the Standard Model is replaced by a strongly interacting sector. Although the Standard Model has been exceptionally successful, the scalar sector causes theoretical problems that make these theories seem an attractive alternative. I begin my thesis by considering QCD, which is the known example of strong interactions. The theory exhibits two phenomena: confinement and chiral symmetry breaking. I find the low-energy dynamics to be similar to that of the sigma models. Then I analyze the problems of the Standard Model Higgs sector, mainly the unnaturalness and triviality. Motivated by the example of QCD, I introduce the minimal technicolor model to resolve these problems. I demonstrate the minimal model to be free of anomalies and then deduce the main elements of its low-energy particle spectrum. I find the particle spectrum contains massless or very light technipions, and also technibaryons and techni-vector mesons with a high mass of over 1 TeV. Standard Model fermions remain strictly massless at this stage. Thus I introduce the technicolor companion theory of flavor, called extended technicolor. I show that the Standard Model fermions and technihadrons receive masses, but that they remain too light. I also discuss flavor-changing neutral currents and precision electroweak measurements. I then show that walking technicolor models partly solve these problems. In these models, contrary to QCD, the coupling evolves slowly over a large energy scale. This behavior adds to the masses so that even the light technihadrons are too heavy to be detected at current particle accelerators. Also all observed masses of the Standard Model particles can be generated, except for the bottom and top quarks. Thus it is shown in this thesis that, excluding the masses of third generation quarks, theories based on walking technicolor can in principle produce the observed particle spectrum.