3 resultados para HAFNIUM

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis deals with the syntheses of olefin homo- and copolymers using different kind of metallocene catalyst. Ethene, propene, 1-hexene, 1-hexadecene, vinylcyclohexane and phenylnorbornene were homo- or copolymerized with the catalysts. The unbridged benzyl substituted zirconium dichloride catalysts (1-4), ansa- bridged acenaphtyl substituted zirconium dichloride catalysts, ( 5, 6), rac- and meso-ethylene-bis(1-indenyl)zirconium dichlorides, (rac- and meso-8), rac-ethylene-bis(1-indenyl)hafnium dichloride, ( 12), bis(9-fluorenyl)hafnium dichloride (14 ) enantiomerically pure (R)- phenylethyl[(9-fluorenyl-1-indenyl)]ZrCl2, (11), 14 and asymmetric dimethylsilyl[(3-benzylindenyl-(2-methylbenzen[e]indenyl)] zirconium dichloride, (13), were prepared in our laboratory. Dimethylsilyl-bis(1-indenyl)zirconium dichloride, (9), isopropylidene(9-fluorenyl-cyclopentadienyl)zirconium dichloride, (10), and were obtained commercially. The solid-state structures of the catalysts rac- and meso-1 were determined by X-ray crystallography. Computational methods were used for the structure optimization of the catalyst rac- and meso-1 in order to compare the theoretical calculations with the experimental results. Polymerization experiments were conducted in a highly purified autoclave system using low pressures (< 5 bar) of gaseous monomers. The experiments were designed to attain the optimal catalytic activity and a uniform copolymer composition. The prepared homo- and copolymers were characterized by the gel permeation chromatography, GPC, differential scanning calorimetry, DSC, nuclear magnetic resonance, NMR, and Fourier transform infrared spectrometry, FTIR . Molar mass (Mw, Mn), molar mass distribution (Mw/Mn), tacticity, comonomer content, melting temperature, glass transition temperature, and end group structures and content were determined. A special attention was paid on the correlation of the polymer properties with the catalyst structures and polymerization conditions. An intramolecular phenyl coordination was found in phenyl substituted benzyl zirconocenes 1-3 explaining the decreased activity of the catalysts. Novel copolymers poly(propene-co-phenylnorbornene) and poly(propene co-vinylcyclohexane), were synthesized and high molar mass poly(ethene-co-1-hexene) and poly(ethene-co-1-hexadecene) copolymers with elastic properties were prepared. Activation of a hafnocene catalyst was studied with UV-Vis spectrometry and activation process for the synthesis of ultra high molar mass poly(1-hexene) was found out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leucogranite magmatism occurred in southern Finland during the later stages of the Paleoproterozoic Svecofennian orogeny. The leucogranites are considered to have formed from pre-existing crustal rocks that have undergone anatexis in the extensional stage of the orogeny, following continental collision and resultant crustal thickening. The leucogranites have been studied in the field using petrographic and mineralogical methods, elemental and isotope geochemistry on whole rocks and minerals, and U-Pb geochronology. On outcrop scale, these granites typically form heterogeneous, layered, sheet-like bodies that migmatize their country rocks. All of the leucogranites are peraluminous and rich in SiO2, but otherwise display significant geochemical variation. Their Nd isotope composition ranges from fairly juvenile to very unradiogenic, and the Hf isotope composition of their zircon shows a varying degree of mixing in the source, the zircon populations becoming more heterogeneous and generally less radiogenic towards the east. The leucogranites have been dated using U-Pb isotopic analyses, utilizing thermal ionization mass spectrometry, secondary ion mass spectrometry, and laser ablation multicollector ICP mass spectrometry on zircon and monazite. The results show that the granites were emplaced between 1.85 Ga and 1.79 Ga, which is a considerably longer period than has traditionally been perceived for these rocks. The rocks tend to become younger towards the east. Single crystal data also display a wide array of inherited zircons, especially in the eastern part of the leucogranite belt. The most common inherited age groups are ~2.8 2.5 Ga, ~2.1 2.1 Ga, and ~1.9 Ga. Magmatic zircon and monazite usually record similar ages for any one sample.Thermobarometric calculations indicate that the leucogranites in the Veikkola area of southcentral Finland were formed from relatively low-temperature melts, and emplaced at 17-25 km depth, i.e. at mid-crustal level. It is likely that these conditions apply to the Svecofennian leucogranites in general. Large differences in the Hf and Nd isotope compositions, emplacement ages, and distributions of inherited zircon ages show that these granites were formed from different types of source rocks, which probably included both sedimentary and igneous rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sanukitoid series intrusions can be found throughout the Archean Karelian Province of the Fennoscandian shield. All sanukitoids share the same controversial elemental characteristics: they have high content of incompatible elements such as K, Ba, and Sr as well as high content of the compatible elements Mg, Cr, and Ni, and high Mg#. This composition is explained by an enriched mantle wedge origin in a Neoarchean subduction setting. This study concentrates on sanukitoid intrusions and tonalite-trondhjemite-granodiorite series (TTGs) from Finnish part of the Karelian Province. The collected rock samples have been studied in the field and under microscope as well as for their whole-rock (including isotopes) and mineral compositions. The new data together with previously published analyses help us to better understand the petrogenesis, tectonic setting and reworking of the Archean rock units. TTGs from the Karelian Province form a voluminous series of granitoids and reworked migmatites. This study divides TTG series into two subgroups based on their elemental composition: low-HREE (heavy rare earth element) TTGs and high-HREE TTGs indicating pressure differences in their source. Sanukitoid series is a minor, divergent group of intrusions. These intrusions are variable sized, and the texture varies from even-grained to K-feldspar porphyritic. The elemental composition differentiates sanukitoids from more voluminous TTG groups, the SiO2 in sanukitoids varies to include series of gabbro, diorite, and granodiorite. U Pb age determinations from sanukitoid series show temporally limited emplacement between ~ 2745 2715 Ma after the main crust forming period in the area. Hafnium, neodymium, common lead, and oxygene isotopes indicate well homogenized characteristics. Recycled crust has made a variable, yet minor, contribution to sanukitoids, as evidenced by oxygene isotopes and inherited zircon cores. A proposed tectonic setting for the formation of the sanukitoid series is slab breakoff of oceanic lithosphere in subduction setting, with sanukitoids deriving from an enriched mantle wedge. The proposed setting explains some of the peculiar features of sanukitoids, such as their temporally limited occurrence and controversial elemental composition. Sanukitoids would occur after cessation of the regional growth of Archean crust, and they could be derived from mantle wedge previously enriched by melts and fluids from oceanic crust and sediments. A subsequent event during the Paleoproterozoic Svecofennian orogeny at ~1.9 Ga affected the appearance and microstructures of the rocks as well as caused redistribution of lead between minerals and whole rock. However, the deformation was not able to obliterate the original geochemical characteristics of these sanukitoids.