7 resultados para Graphemic output buffer

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus (P) retention properties of soils typical for boreal forest, i.e. podzolic soil and peat soils, vary significantly, but the range of this variation has not been sufficiently documented. To assess the usefulness of buffer zones used in forestry in removing P from the discharge by chemical sorption in soil, and to estimate the risk of P leaching after forestry operations, more data is needed on soil P retention properties. P retention properties of soils were studied at clear-cut areas, unharvested buffer zones adjoining the clear-cut and at peatland buffer zone areas. Desorption-sorption isotherms were determined for the humus layer, the mineral soil horizons E, B and C of the Podzol profile and for the surface layer peat (0-15 cm) and the subsurface layer peat (15-30 cm). The efficiency of buffer zones in retaining P was studied at six peatland buffer zone areas by adding P-containing solute in the inflow. A tracer study was conducted at one of the buffer zone areas to determine the allocation of the added P in soil and vegetation. Measured sorption or desorption rather than parameter values of fitted sorption equations described P desorption and sorption behaviour in soil. The highest P retention efficiency was in the B horizon and consequently, if contact occurred or was established between the soluble P in the water and the soil B horizon, the risk of P leaching was low. Humus layer was completely incapable of retaining P after clear-cutting. In the buffer zones, the decrease in P retention properties in the humus layer and the low amount of P sorbed by it indicated that the importance of the layer in the functioning of buffer zones is low. The peatland buffer zone areas were efficient in retaining soluble P from inflow. P sorption properties of the peat soil at the buffer zone areas varied largely but the contribution of P sorption in the peat was particularly important during high flow in spring, when the vegetation was not fully developed. Factors contributing to efficient P retention were large buffer size and low hydrological load whereas high hydrological load combined with the formation of preferential flow paths, especially during early spring or late autumn was disadvantageous. However, small buffer zone areas, too, may be efficient in reducing P load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies empirically whether measurement errors in aggregate production statistics affect sentiment and future output. Initial announcements of aggregate production are subject to measurement error, because many of the data required to compile the statistics are produced with a lag. This measurement error can be gauged as the difference between the latest revised statistic and its initial announcement. Assuming aggregate production statistics help forecast future aggregate production, these measurement errors are expected to affect macroeconomic forecasts. Assuming agents’ macroeconomic forecasts affect their production choices, these measurement errors should affect future output through sentiment. This thesis is primarily empirical, so the theoretical basis, strategic complementarity, is discussed quite briefly. However, it is a model in which higher aggregate production increases each agent’s incentive to produce. In this circumstance a statistical announcement which suggests aggregate production is high would increase each agent’s incentive to produce, thus resulting in higher aggregate production. In this way the existence of strategic complementarity provides the theoretical basis for output fluctuations caused by measurement mistakes in aggregate production statistics. Previous empirical studies suggest that measurement errors in gross national product affect future aggregate production in the United States. Additionally it has been demonstrated that measurement errors in the Index of Leading Indicators affect forecasts by professional economists as well as future industrial production in the United States. This thesis aims to verify the applicability of these findings to other countries, as well as study the link between measurement errors in gross domestic product and sentiment. This thesis explores the relationship between measurement errors in gross domestic production and sentiment and future output. Professional forecasts and consumer sentiment in the United States and Finland, as well as producer sentiment in Finland, are used as the measures of sentiment. Using statistical techniques it is found that measurement errors in gross domestic product affect forecasts and producer sentiment. The effect on consumer sentiment is ambiguous. The relationship between measurement errors and future output is explored using data from Finland, United States, United Kingdom, New Zealand and Sweden. It is found that measurement errors have affected aggregate production or investment in Finland, United States, United Kingdom and Sweden. Specifically, it was found that overly optimistic statistics announcements are associated with higher output and vice versa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena on tuottaa uutta tietoa Suomen kansantalouden rakenteesta ja lyhyen aikavälin kehityksestä 1920- ja 1930-luvulla. Tutkimus toteutettiin laatimalla kansantaloutta kuvaava panos-tuotostaulu vuodelle 1928 sekä sen laajennus, panos-tuotosmalli. Aineiston avulla kuvataan kansantalouden rakenteellisia riippuvuuksia, tuotannon avaintoimialoja sekä näiden vaikutusta kansantalouteen. Lisäksi tutkimuksessa tarkastellaan kansantalouden tuontiriippuvuutta sekä tuontitullien vaikutusta hintoihin 1930-luvun laman aikana. Tutkimuksen perusteella voitiin identifioida Suomen kansantalouden avaintoimialat vuonna 1928: maatalous, metsätalous, elintarviketeollisuus, puuteollisuus, paperiteollisuus ja rakennustoiminta. Erityisesti elintarviketeollisuuden vahva rooli kansantaloudessa oli kenties yllättävää, erityisesti kun huomioidaan kuinka vähän toimiala on saanut huomiota osakseen taloushistorian tutkimuksessa. Tutkimus osoitti, että Suomen vienti oli pääomavaltaisempaa kuin tuonti. Vaikka tämän tuloksen tulkinta on varauksellinen, tutkimus pystyi osoittamaan ja kvantifioimaan toimialojen työ- ja pääomapanoksen osuuden tuotoksesta yksityiskohtaisesti. Panos-tuotosmallilla arvioitiin puuteollisuuden, paperiteollisuuden ja rakennustoiminnan ajanjaksona 1928-32 tapahtuneen loppukäytön muutoksen vaikutusta kansantalouteen. Merkittävä havainto on, että rakennustoiminnan loppukäytön muutoksella oli erittäin suuri kasvua vähentävä vaikutus koko kansantaloudessa. Talonrakennusinvestointien romahtaminen aiheutti lähes 13 prosentin tuotannon laskun kansantaloudessa. Vaikutus oli jopa suurempi kuin puuteollisuuden viennin romahtamisen. Tulokset osoittavat toisaalta, että yksityisen kulutuksen merkitys kansantaloudelle oli erittäin vahva. Esimerkiksi puuteollisuuden viennin romahtaminen aiheutti yli 4 % tuotannon vähenemisen mutta huomioitaessa mallissa myös yksityisen kulutuksen väheneminen, oli kokonaisvaikutus yli 10 %. Yksityisen kulutuksen huomioiminen mallissa siis yli kaksinkertaisti toimialojen vaikutukset kansantalouteen. Tulokset vahvistivat aiemmissa tutkimuksissa esitettyjä johtopäätöksiä tullipolitiikasta ja osoittivat maatalouteen läheisesti liittyvän elintarviketeollisuuden olleen eniten suojeltu toimiala kansantaloudessa. Muut kotimarkkinoiden toimialat eivät kuitenkaan hyötyneet tullipolitiikasta lamakauden aikana. Panos-tuotoshintamallilla osoitettiin, ettei tullipolitiikka ollut niin onnistunutta kuin aikalaistutkimuksissa väitettiin, vaan tullit korkeintaan pystyivät hidastamaan hintojen alenemista. Tutkimuksen liitteenä esitetään kaikki keskeiset Suomen kansantaloutta vuonna 1928 kuvaavat tilastolliset taulukot, mukaan lukien käyttö- ja tarjontataulukot, panos-tuotostaulukot, panoskertoimet, Leontiefin käänteismatriisi sekä työ- ja pääomapanoskertoimet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of buffer areas in forested catchments has been actively researched during the last 15 years; but until now, the research has mainly concentrated on the reduction of sediment and phosphorus loads, instead of nitrogen (N). The aim of this thesis was to examine the use of wetland buffer areas to reduce the nitrogen transport in forested catchments and to investigate the environmental impacts involved in their use. Besides the retention capacity, particular attention was paid to the main factors contributing to the N retention, the potential for increased N2O emissions after large N loading, the effects of peatland restoration for use as buffer areas on CH4 emissions, as well as the vegetation composition dynamics induced by the use of peatlands as buffer areas. To study the capacity of buffer areas to reduce N transport in forested catchments, we first used large artificial loadings of N, and then studied the capacity of buffer areas to reduce ammonium (NH4-N) export originating from ditch network maintenance areas in forested catchments. The potential for increased N2O emissions were studied using the closed chamber technique and a large artificial N loading at five buffer areas. Sampling for CH4 emissions and methane-cycling microbial populations were done on three restored buffer areas and on three buffers constructed on natural peatlands. Vegetation composition dynamics was studied at three buffer areas between 1996 and 2009. Wetland buffer areas were efficient in retaining inorganic N from inflow. The key factors contributing to the retention were the size and the length of the buffer, the hydrological loading and the rate of nutrient loading. Our results show that although the N2O emissions may increase temporarily to very high levels after a large N loading into the buffer area, the buffer areas in forested catchments should be viewed as insignificant sources of N2O. CH4 fluxes were substantially higher from buffers constructed on natural peatlands than from the restored buffer areas, probably because of the slow recovery of methanogens after restoration. The use of peatlands as buffer areas was followed by clear changes in plant species composition and the largest changes occurred in the upstream parts of the buffer areas and the wet lawn-level surfaces, where the contact between the vegetation and the through-flow waters was closer than for the downstream parts and dry hummock sites. The changes in the plant species composition may be an undesired phenomenon especially in the case of the mires representing endangered mire site types, and therefore the construction of new buffer areas should be primarily directed into drained peatland areas.