3 resultados para Gold mines and mining

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff bases and their transition metal complexes are of significant current interest even though they have been prepared for decades. They have been used in various applications such as catalysis, corrosion protection, and molecular sensors. In this study, N-aryl Schiff base ketimine ligands as well as numerous new, differently substituted salen and salophen-type ligands and their cobalt(II), copper(II), iron(II), manganese(II), and nickel(II) complexes were synthesised. New solid state structures of the above compounds and the dioxygen coordination properties of cobalt(II) complexes and catalytic properties of three synthesised binuclear complexes were examined. The prepared complexes were applied in the formation of self-assembled layers on a polycrystalline gold surface and liquid-graphite interface. The effect of metal ion and ligand structure on the as-formed patterns was studied. When studying gold surfaces, a unique thiol-assisted dissolution of elemental gold was observed and a new thin gold foil preparation method was introduced. In the summary, synthesis, structures, and properties of Schiff base ligands and their transition metal complexes are described in detail and the applications of these reviewed. Assemblies of other complexes on a liquid-graphite interface and on a gold surface are also presented, and the surface characterisation methods and surfaces employed are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like an Icebreaker: The Finnish Seamen s Union as collective bargaining maverick and champion of sailors social safety 1944-1980. The Finnish Seamen's Union (FSU), which was established on a national basis in 1920, was one of the first Finnish trade unions to succeed in collective bargaining. In the early 1930s, the gains made in the late 1920s were lost, due to politically based internal rivalries, the Great Depression, and a disastrous strike. Unexpectedly the FSU survived and went on promoting the well-being of its members even during World War II. After the war the FSU was in an exceptionally favorable position to exploit the introduction of coordinated capitalism, which was based on social partnership between unions, employers and government. Torpedoes, mines and confiscations had caused severe losses to the Finnish merchant marine. Both ship-owners and government alike understood the crucial importance of using the remaining national shipping capacity effectively. The FSU could no longer be crushed, and so, in 1945, the union was allowed to turn all ocean-going Finnish ships into closed shops. The FSU also had another source of power. After the sailors of the Finnish icebreaker fleet also joined its ranks, the FSU could, in effect, block Finnish foreign trade in wintertime. From the late 1940s to the 1960s the union started and won numerous icebreaker strikes. Finnish seamen were thus granted special pension rights, reductions on income taxes and import duties, and other social privileges. The FSU could neither be controlled by union federations nor intimidated by employers or governments. The successful union and its tactically clever chairperson, Niilo Välläri, were continuously but erroneously accused of syndicalism. Välläri did not aim for socialism but wanted the Finnish seamen to get all the social benefits that capitalism could possibly offer. Välläri s policy was successfully followed by the FSU until the late 1980s when Finnish ship-owners were allowed to flag their vessels outside the national registry. Since then the FSU has been on the defensive and has yielded to pay cuts. The FSU members have not lost their social benefits, but they are under constant fear of losing their jobs to cheap foreign labor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.