45 resultados para Glucose Transporter Type 4
em Helda - Digital Repository of University of Helsinki
Resumo:
Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.
Resumo:
Identification of genes predisposing to tumor syndromes has raised general awareness of tumorigenesis. Genetic testing of tumor susceptibility genes aids the recognition of individuals at increased risk of tumors. Identification of novel predisposing genes enables further studies concerning the classification of potential associated tumors and the definition of target patient group. Pituitary adenomas are common, benign neoplasms accounting for approximately 15% of all intracranial tumors. Accurate incidence estimation is challenging since a great portion of these adenomas are small and asymptomatic. Clinically relevant adenomas, that cause symptoms due to the expansion of the cell mass or the over-secretion of normally produced hormones, occur in approximately one of 1 000 individuals. Although the majority of pituitary adenomas are sporadic, a minority occur as components of familial syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 syndrome is caused by germ-line mutations in the MEN1 gene, whereas most of the CNC patients carry the mutated protein kinase A (PKA) regulatory subunit-1-α (PRKAR1A) gene. Recently, other conditions predisposing to endocrine tumors have been identified: Pituitary Adenoma Predisposition (PAP) and MEN type 4 (MEN4). PAP was originally identified in a genetically homogeneous Finnish population. In a population based cohort from Northern Finland, aryl hydrocarbon receptor-interacting protein (AIP) gene mutations were found in 16% of all patients diagnosed with growth hormone (GH) producing pituitary adenoma, and in 40% of the subset of patients who were diagnosed under the age of 35 years. Since AIP mutations were originally described in a defined, homogeneous population from Northern Finland, it was relevant to study whether mutations also occur in more heterogeneous populations. In patient cohorts with different ethnic origins and variable clinical phenotypes, germ-line AIP mutations were detectable at low frequencies (range 0.8-7.4%). AIP mutation-positive patients were often diagnosed with a GH-producing adenoma at a young age, and usually had no family history of endocrine tumors. The low frequency of AIP mutations in randomly selected patients, and the lack of any family history of pituitary adenomas create a challenge for the identification of PAP patients. Our preliminary study suggests that AIP immunohistochemistry may serve as a pre-screening tool to distinguish between the AIP mutation-negative and the mutation-positive tumors. Tumors of various endocrine glands are components of MEN1 and CNC syndromes. Somatic MEN1 and PRKAR1A mutations in sporadic pituitary adenomas are rare, but occur in some of the other tumors related to these syndromes. The role of AIP mutations in endocrine neoplasia was studied and our results indicated that somatic AIP mutations are rare or non-existent in sporadic tumors of endocrine glands (0 of 111). Furthermore, germ-line AIP mutations in prolactin producing adenomas (2 of 9) confirmed the role of this pituitary tumor type in the PAP phenotype. Thyroid disorders are common in the general population, and the majority of them are sporadic. Interestingly, it has been suggested that thyroid disorders might be more common in PAP families. For this reason we studied germ-line AIP mutations in 93 index cases from familial non-medullary thyroid cancer (NMTC) families. The underlying gene or genes for familial NMTC have not been identified yet. None of the patients had any potentially pathogenic AIP mutation. This suggests that AIP is unlikely to play a role in familial NMTCs. A novel multiple endocrine syndrome was originally described in rats with phenotypic features of human MEN type 1 and 2. Germ-line mutations of cyclin-dependent kinase inhibitor 1B (CDKN1B also known as p27Kip1) gene were reported later in these rats and a germ-line mutation was also identified in one human family with MEN1-like phenotype (later named MEN4). To confirm the importance of this gene’s mutations in humans, we performed a mutation screening in MEN-like patients and in patients with pituitary adenoma. Our results indicate that CDKN1B/p27Kip1 mutations appear in a small portion of MEN1-like patients (one of 36), and that such mutations are rare or non-existent in both familial (0 of 19) and sporadic pituitary adenoma patients (0 of 50). In conclusion, this work strengthens the tumor susceptibility role of AIP and CDKN1B/p27Kip1 in endocrine neoplasia. Clarifying the PAP phenotype facilitates the identification of potential AIP mutation carriers. Genetic counseling can be offered to the relatives and follow-up of the mutation carriers can be organized, hence an earlier diagnosis is feasible.
Resumo:
Background and context Since the economic reforms of 1978, China has been acclaimed as a remarkable economy, achieving 9% annual growth per head for more than 25 years. However, China's health sector has not fared well. The population health gains slowed down and health disparities increased. In the field of health and health care, significant progress in maternal care has been achieved. However, there still remain important disparities between the urban and rural areas and among the rural areas in terms of economic development. The excess female infant deaths and the rapidly increasing sex ratio at birth in the last decade aroused serious concerns among policy makers and scholars. Decentralization of the government administration and health sector reform impacts maternal care. Many studies using census data have been conducted to explore the determinants of a high sex ratio at birth, but no agreement has been so far reached on the possible contributing factors. No study using family planning system data has been conducted to explore perinatal mortality and sex ratio at birth and only few studies have examined the impact of the decentralization of government and health sector reforms on the provision and organization of maternal care in rural China. Objectives The general objective of this study was to investigate the state of perinatal health and maternal care and their determinants in rural China under the historic context of major socioeconomic reforms and the one child family planning policy. The specific objectives of the study included: 1) to study pregnancy outcomes and perinatal health and their correlates in a rural Chinese county; 2) to examine the issue of sex ratio at birth and its determinants in a rural Chinese county; 3) to explore the patterns of provision, utilization, and content of maternal care in a rural Chinese county; 4) to investigate the changes in the use of maternal care in China from 1991 to 2003. Materials and Methods This study is based on a project for evaluating the prenatal care programme in Dingyuan county in 1999-2003, Anhui province, China and a nationwide household health survey to describe the changes in maternal care utilization. The approaches used included a retrospective cohort study, cross sectional interview surveys, informant interviews, observations and the use of statistical data. The data sources included the following: 1) A cohort of pregnant women followed from pregnancy up to 7 days after birth in 20 townships in the study county, collecting information on pregnancy outcomes using family planning records; 2) A questionnaire interview survey given to women who gave birth between 2001 and 2003; 3) Various statistical and informant surveys data collected from the study county; 4) Three national household health interview survey data sets (1993-2003) were utilized, and reanalyzed to described the changes in maternity care utilization. Relative risks (RR) and their confidence intervals (CI) were calculated for comparison between parity, approval status, infant sex and township groups. The chi-square test was used to analyse the disparity of use of maternal care between and within urban and rural areas and its trend across the years in China. Logistic regression was used to analyse the factors associated with hospital delivery in rural areas. Results There were 3697 pregnancies in the study cohort, resulting in 3092 live births in a total population of 299463 in the 20 study townships during 1999-2000. The average age at pregnancy in the cohort was 25.9 years. Of the women, 61% were childless, 38% already had one child and 0.3% had two children before the current pregnancy. About 90% of approved pregnancies ended in a live birth while 73% of the unapproved ones were aborted. The perinatal mortality rate was 69 per thousand births. If the 30 induced abortions in which the gestational age was more than 28 weeks had been counted as perinatal deaths, the perinatal mortality rate would have been as high as 78 per thousand. The perinatal mortality rate was negatively associated with the wealth of the township. Approximately two thirds of the perinatal deaths occurred in the early neonatal period. Both the still birth rate and the early neonatal death rate increased with parity. The risk of a stillbirth in a second pregnancy was almost four times that for a first pregnancy, while the risk of early neonatal deaths doubled. The early neonatal mortality rate was twice as high for female as for male infants. The sex difference in the early neonatal mortality rate was mainly attributable to mortality in second births. The male early neonatal mortality rate was not affected by parity, while the female early neonatal mortality rate increased dramatically with parity: it was about six times higher for second births than for first births. About 82% early neonatal deaths happened within 24 hours after birth, and during that time, girls were almost three times more likely to die than boys. The death rate of females on the day of birth increased much more sharply with parity than that of males. The total sex ratio at birth of 3697 registered pregnancies was 152 males to 100 females, with 118 and 287 in first and second pregnancies, respectively. Among unapproved pregnancies, there were almost 5 live-born boys for each girl. Most prenatal and delivery care was to be taken care of in township hospitals. At the village level, there were small private clinics. There was no limitation period for the provision of prenatal and postnatal care by private practitioners. They were not permitted to provide delivery care by the county health bureau, but as some 12% of all births occurred either at home or at private clinics; some village health workers might have been involved. The county level hospitals served as the referral centers for the township hospitals in the county. However, there was no formal regulation or guideline on how the referral system should work. Whether or not a woman was referred to a higher level hospital depended on the individual midwife's professional judgment and on the clients' compliance. The county health bureau had little power over township hospitals, because township hospitals had in the decentralization process become directly accountable to the township government. In the township and county hospitals only 10-20% of the recurrent costs were funded by local government (the township hospital was funded by the township government and the county hospital was funded by the county government) and the hospitals collected user fees to balance their budgets. Also the staff salaries depended on fee incomes by the hospital. The hospitals could define the user charges themselves. Prenatal care consultations were however free in most township hospitals. None of the midwives made postnatal home visits, because of low profit of these services. The three national household health survey data showed that the proportion of women receiving their first prenatal visit within 12 weeks increased greatly from the early to middle 1990s in all areas except for large cities. The increase was much larger in the rural areas, reducing the urban-rural difference from more than 4 times to about 1.4 times. The proportion of women that received antenatal care visits meeting the Ministry of Health s standard (at least 5 times) in the rural areas increased sharply from 12% in 1991-1993 to 36% in 2001-2003. In rural areas, the proportion increase was much faster in less developed areas than in developed areas. The hospital delivery rate increased slightly from 90% to 94% in urban areas while the proportion increased from 27% to 69% in rural areas. The fastest change was found to be in type 4 rural areas, where the utilization even quadrupled. The overall difference between rural and urban areas was substantially narrowed over the period. Multiple logistic regression analysis shows that time periods, residency in rural or urban areas, income levels, age group, education levels, delivery history, occupation, health insurance and distance from the nearest health care facilities were significantly associated with hospital delivery rates. Conclusions 1. Perinatal mortality in this study was much higher than that for urban areas as well as any reported rate from specific studies in rural areas of China. Previous studies in which calculations of infant mortality were not based on epidemiological surveys have been shown to underestimate the rates by more than 50%. 2. Routine statistics collected by the Chinese family planning system proved to be a reliable data source for studying perinatal health, including still births, neonatal deaths, sex ratio at birth and among newborns. National Household Health Survey data proved to be a useful and reliable data source for studying population health and health services. Prior to this research there were few studies in these areas available to international audiences. 3.Though perinatal mortality rate was negatively associated with the level of township economic development, the excess female early neonatal mortality rate contributed much more to high perinatal mortality rate than economic factors. This was likely a result of the role of the family planning policy and the traditional preferences for sons, which leads to lethal neglect of female newborns and high perinatal mortality. 4. The selective abortions of female foetuses were likely to contribute most to the high sex ratio at birth. The underreporting of female births seemed to have played a secondary role. The higher early neonatal mortality rate in second-born as compared to first-born children, particularly in females, may indicate that neglect or poorer care of female newborn infants also contributes to the high sex ratio at birth or among newborns. Existing family planning policy proved not to effectively control the steadily increased birth sex ratio. 5. The rural-urban gap in service utilization was on average significantly narrowed in terms of maternal healthcare in China from 1991 to 2003. This demonstrates that significant achievements in reducing inequities can be made through a combination of socio-economic development and targeted investments in improving health services, including infrastructure, staff capacities, and subsidies to reduce the costs of service utilization for the poorest. However, the huge gap which persisted among cities of different size and within different types of rural areas indicated the need for further efforts to support the poorest areas. 6. Hospital delivery care in the study county was better accepted by women because most of women think delivery care was very important while prenatal and postnatal care were not. Hospital delivery care was more systematically provided and promoted than prenatal and postnatal care by township hospital in the study area. The reliance of hospital staff income on user fees gave the hospitals an incentive to put more emphasis on revenue generating activities such as delivery care instead of prenatal and postnatal care, since delivery care generated much profits than prenatal and postnatal care . Recommendations 1. It is essential for the central government to re-assess and modify existing family planning policies. In order to keep national sex balance, the existing practice of one couple one child in urban areas and at-least-one-son a couple in rural areas should be gradually changed to a two-children-a-couple policy throughout the country. The government should establish a favourable social security policy for couples, especially for rural couples who have only daughters, with particular emphasis on their pension and medical care insurance, combined with an educational campaign for equal rights for boys and girls in society. 2. There is currently no routine vital-statistics registration system in rural China. Using the findings of this study, the central government could set up a routine vital-statistics registration system using family planning routine work records, which could be used by policy makers and researchers. 3. It is possible for the central and provincial government to invest more in the less developed and poor rural areas to increase the access of pregnant women in these areas to maternal care services. Central government together with local government should gradually provide free maternal care including prenatal and postnatal as well as delivery care to the women in poor and less developed rural areas. 4. Future research could be done to explore if county and the township level health care sector and the family planning system could be merged to increase the effectiveness and efficiency of maternal and child care. 5. Future research could be done to explore the relative contribution of maternal care, economic development and family planning policy on perinatal and child health using prospective cohort studies and community based randomized trials. Key words: perinatal health, perinatal mortality, stillbirth, neonatal death, sex selective abortion, sex ratio at birth, family planning, son preference, maternal care, prenatal care, postnatal care, equity, China
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
Objectives of this study were to determine secular trends of diabetes prevalence in China and develop simple risk assessment algorithms for screening individuals with high-risk for diabetes or with undiagnosed diabetes in Chinese and Indian adults. Two consecutive population based surveys in Chinese and a prospective study in Mauritian Indians were involved in this study. The Chinese surveys were conducted in randomly selected populations aged 20-74 years in 2001-2002 (n=14 592) and 35-74 years in 2006 (n=4416). A two-step screening strategy using fasting capillary plasma glucose (FCG) as first-line screening test followed by standard 2-hour 75g oral glucose tolerance tests (OGTTs) was applied to 12 436 individuals in 2001, while OGTTs were administrated to all participants together with FCG in 2006 and to 2156 subjects in 2002. In Mauritius, two consecutive population based surveys were conducted in Mauritian Indians aged 20-65 years in 1987 and 1992; 3094 Indians (1141 men), who were not diagnosed as diabetes at baseline, were reexamined with OGTTs in 1992 and/or 1998. Diabetes and pre-diabetes was defined following 2006 World Health Organization/ International Diabetes Federation Criteria. Age-standardized, as well as age- and sex-specific, prevalence of diabetes and pre-diabetes in adult Chinese was significantly increased from 12.2% and 15.4% in 2001 to 16.0% and 21.2% in 2006, respectively. A simple Chinese diabetes risk score was developed based on the data of Chinese survey 2001-2002 and validated in the population of survey 2006. The risk scores based on β coefficients derived from the final Logistic regression model ranged from 3 – 32. When the score was applied to the population of survey 2006, the area under operating characteristic curve (AUC) of the score for screening undiagnosed diabetes was 0.67 (95% CI, 0.65-0.70), which was lower than the AUC of FCG (0.76 [0.74-0.79]), but similar to that of HbA1c (0.68 [0.65-0.71]). At a cut-off point of 14, the sensitivity and specificity of the risk score in screening undiagnosed diabetes was 0.84 (0.81-0.88) and 0.40 (0.38-0.41). In Mauritian Indian, body mass index (BMI), waist girth, family history of diabetes (FH), and glucose was confirmed to be independent risk predictors for developing diabetes. Predicted probabilities for developing diabetes derived from a simple Cox regression model fitted with sex, FH, BMI and waist girth ranged from 0.05 to 0.64 in men and 0.03 to 0.49 in women. To predict the onset of diabetes, the AUC of the predicted probabilities was 0.62 (95% CI, 0.56-0.68) in men and 0.64(0.59-0.69) in women. At a cut-off point of 0.12, the sensitivity and specificity was 0.72(0.71-0.74) and 0.47(0.45-0.49) in men; and 0.77(0.75-0.78) and 0.50(0.48-0.52) in women, respectively. In conclusion, there was a rapid increase in prevalence of diabetes in Chinese adults from 2001 to 2006. The simple risk assessment algorithms based on age, obesity and family history of diabetes showed a moderate discrimination of diabetes from non-diabetes, which may be used as first line screening tool for diabetes and pre-diabetes, and for health promotion purpose in Chinese and Indians.
Resumo:
Theory of developmental origins of adult health and disease proposes that experiences during critical periods of early development may have consequences on health throughout a lifespan. Thesis studies aimed to characterize associations between early growth and some components of the metabolic syndrome cluster. Participants belong to two epidemiological cohorts with data on birth measurements and, for the younger cohort, on serial recordings of weight and height during childhood. They were born as singletons between 1924-33 and 1934-44 in the Helsinki University Central Hospital, and 500 and 2003 of them, respectively, attended clinical studies at the age of 65-75 and 56-70 years, respectively. In the 65-75 year old men and women, the well-known inverse relationship between birth weight and systolic blood pressure (SBP) was confined to people who had established hypertension. Among them a 1-kg increase in birth weight was associated with a 6.4-mmHg (95% CI: 1.0 to 11.9) decrease in SBP. This relationship was further confined to people with the prevailing Pro12Pro polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) gene. People with low birth weight were more likely to receive angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEI/ARB, p=0.03), and, again, this relationship was confined to the carriers of the Pro12Pro (p=0.01 for interaction). These results suggest that the inverse association between birth weight and systolic BP becomes focused in hypertensive people because pathological features of BP regulation, associated with slow fetal growth, become self-perpetuating in adult life. Insulin resistance of the Pro12Pro carriers with low birth weight may interact with the renin-angiotensin system leading to raised BP levels. Habitual physical activity protected men and women who were small at birth, and thus at increased risk for the development of type 2 diabetes, against glucose intolerance more strongly. Among subjects with birth weight ≤3000 g, the odds ratio (OR) for glucose intolerance was 5.2 (95% CI: 2.1 to 13) in those who exercised less than 3 times per week compared to regular exercisers; in those who scored their exercise light compared with moderate exercisers (defined as comparable to brisk walking) the OR was 3.5 (1.5 to 8.2). In the 56-70 year old men a 1 kg increase in birth weight corresponded to a 4.1 kg (95% CI: 3.1 to 5.1) and in women to a 2.9 kg (2.1 to 3.6) increase in adult lean mass. Rapid gain in body mass index (BMI), i.e. crossing from an original BMI percentile to a higher one, before the age of 2 years increased adult lean mass index (LMI, lean mass/height squared) without excess fat accumulation whereas rapid gain in BMI during later childhood, despite the concurrent rise in LMI, resulted in a relatively higher increase in adult body fat mass. These findings illustrate how genes, the environment and their interactions, early growth patterns, and adult lifestyle modify adult health risks which originate from early life.
Resumo:
Type 2 diabetes is an increasing, serious, and costly public health problem. The increase in the prevalence of the disease can mainly be attributed to changing lifestyles leading to physical inactivity, overweight, and obesity. These lifestyle-related risk factors offer also a possibility for preventive interventions. Until recently, proper evidence regarding the prevention of type 2 diabetes has been virtually missing. To be cost-effective, intensive interventions to prevent type 2 diabetes should be directed to people at an increased risk of the disease. The aim of this series of studies was to investigate whether type 2 diabetes can be prevented by lifestyle intervention in high-risk individuals, and to develop a practical method to identify individuals who are at high risk of type 2 diabetes and would benefit from such an intervention. To study the effect of lifestyle intervention on diabetes risk, we recruited 522 volunteer, middle-aged (aged 40 - 64 at baseline), overweight (body mass index > 25 kg/m2) men (n = 172) and women (n = 350) with impaired glucose tolerance to the Diabetes Prevention Study (DPS). The participants were randomly allocated either to the intensive lifestyle intervention group or the control group. The control group received general dietary and exercise advice at baseline, and had annual physician's examination. The participants in the intervention group received, in addition, individualised dietary counselling by a nutritionist. They were also offered circuit-type resistance training sessions and were advised to increase overall physical activity. The intervention goals were to reduce body weight (5% or more reduction from baseline weight), limit dietary fat (< 30% of total energy consumed) and saturated fat (< 10% of total energy consumed), and to increase dietary fibre intake (15 g / 1000 kcal or more) and physical activity (≥ 30 minutes/day). Diabetes status was assessed annually by a repeated 75 g oral glucose tolerance testing. First analysis on end-points was completed after a mean follow-up of 3.2 years, and the intervention phase was terminated after a mean duration of 3.9 years. After that, the study participants continued to visit the study clinics for the annual examinations, for a mean of 3 years. The intervention group showed significantly greater improvement in each intervention goal. After 1 and 3 years, mean weight reductions were 4.5 and 3.5 kg in the intervention group and 1.0 kg and 0.9 kg in the control group. Cardiovascular risk factors improved more in the intervention group. After a mean follow-up of 3.2 years, the risk of diabetes was reduced by 58% in the intervention group compared with the control group. The reduction in the incidence of diabetes was directly associated with achieved lifestyle goals. Furthermore, those who consumed moderate-fat, high-fibre diet achieved the largest weight reduction and, even after adjustment for weight reduction, the lowest diabetes risk during the intervention period. After discontinuation of the counselling, the differences in lifestyle variables between the groups still remained favourable for the intervention group. During the post-intervention follow-up period of 3 years, the risk of diabetes was still 36% lower among the former intervention group participants, compared with the former control group participants. To develop a simple screening tool to identify individuals who are at high risk of type 2 diabetes, follow-up data of two population-based cohorts of 35-64 year old men and women was used. The National FINRISK Study 1987 cohort (model development data) included 4435 subjects, with 182 new drug-treated cases of diabetes identified during ten years, and the FINRISK Study 1992 cohort (model validation data) included 4615 subjects, with 67 new cases of drug-treated diabetes during five years, ascertained using the Social Insurance Institution's Drug register. Baseline age, body mass index, waist circumference, history of antihypertensive drug treatment and high blood glucose, physical activity and daily consumption of fruits, berries or vegetables were selected into the risk score as categorical variables. In the 1987 cohort the optimal cut-off point of the risk score identified 78% of those who got diabetes during the follow-up (= sensitivity of the test) and 77% of those who remained free of diabetes (= specificity of the test). In the 1992 cohort the risk score performed equally well. The final Finnish Diabetes Risk Score (FINDRISC) form includes, in addition to the predictors of the model, a question about family history of diabetes and the age category of over 64 years. When applied to the DPS population, the baseline FINDRISC value was associated with diabetes risk among the control group participants only, indicating that the intensive lifestyle intervention given to the intervention group participants abolished the diabetes risk associated with baseline risk factors. In conclusion, the intensive lifestyle intervention produced long-term beneficial changes in diet, physical activity, body weight, and cardiovascular risk factors, and reduced diabetes risk. Furthermore, the effects of the intervention were sustained after the intervention was discontinued. The FINDRISC proved to be a simple, fast, inexpensive, non-invasive, and reliable tool to identify individuals at high risk of type 2 diabetes. The use of FINDRISC to identify high-risk subjects, followed by lifestyle intervention, provides a feasible scheme in preventing type 2 diabetes, which could be implemented in the primary health care system.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.
Resumo:
The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.
Resumo:
Background. Patients with type 1 diabetes are at markedly increased risk of vascular complications. In this respect it is noteworthy that hyperglycaemia that is shown to cause endothelial dysfunction, has clearly been shown to be a risk factor for diabetic microvascular disease. However, the role of hyperglycaemia as a predictor of macrovascular disease is not as clear as for microvascular disease, although type 1 diabetes itself increases the risk of cardiovascular disease substantially. Furthermore, it is not known whether it is the short-term or the long-term hyperglycaemia that confers possible risk. In addition, the role of glucose variability as a predictor of complications is to a large extent unexplored. Interestingly, although hyperglycaemia increases the risk of pre-eclampsia in women with type 1 diabetes, it is unclear whether pre-eclampsia, a condition characterized by endothelial dysfunction, is also a risk factor for microvascular complication, diabetic nephropathy. Aims. This doctoral thesis investigated the role of acute hyperglycaemia and glucose variability on arterial stiffness and cardiac ventricular repolarisation in male patients with type 1 diabetes as well as in healthy male volunteers. The thesis also explored whether acute hyperglycaemia leads to an inflammatory response, endothelial dysfunction and oxidative stress. Finally, the role of pre-eclampsia, as a predictor of diabetic nephropathy in type 1 diabetes was examined. Subjects and methods. In order to study glucose variability and the daily glycaemic control, 22 male patients with type 1 diabetes, without any diabetic complications, were monitored for 72-h with a continuous glucose monitoring system. At the end of the 72-h glucose monitoring period a 2-h hyperglycaemic clamp was performed both in the patients with type 1 diabetes and in the 13 healthy age-matched male volunteers. Blood pressure, arterial stiffness and QT time were measured to detect vascular changes during acute hyperglycaemia. Blood samples were drawn at baseline (normoglycaemia) and during acute hyperglycaemia. In another patient sample, women with type 1 diabetes were followed during their pregnancy and restudied eleven years later to elucidate the role of pre-eclampsia and pregnancy-induced hypertension as potential risk factors for diabetic nephropathy. Results and conclusions. Acute hyperglycaemia increased arterial stiffness as well as caused a disturbance in the myocardial ventricular repolarisation, emphasizing the importance of a strict daily glycaemic control in male patients with type 1 diabetes. An inflammatory response was also observed during acute hyperglycaemia. Furthermore, a high mean daily blood glucose but not glucose variability per se is associated with arterial stiffness. While glucose variability in turn correlated with central blood pressure, the results suggest that the glucose metabolism is closely linked to the haemodynamic changes in male patients with uncomplicated type 1 diabetes. Notably, the results are not directly applicable to females. Finally, a history of a pre-eclamptic pregnancy, but not pregnancy-induced hypertension was associated with increased risk of diabetic nephropathy.
Resumo:
The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.
Resumo:
Type 2 diabetes is one of the diseases that largely determined by lifestyle factors. Coffee is one of the most consumed beverages in the world and recently released data suggest the effects of coffee consumption on type 2 diabetes. The objective of the present study was to evaluate the effects of habitual coffee consumption on various aspects of type 2 diabetes and its most common complications. This study is part of the national FINRISK studies. Baseline surveys were carried out between 1972 and 1997. The surveys covered two eastern regions in 1972 and 1977, but were expanded to include a third region in southwestern Finland in 1982, 1987, 1992, and 1997. The Helsinki capital area was included in the survey in 1992 and 1997 and the Oulu province, in northern Finland, in 1997. Each survey was drawn from an independent random sample of the national register of subjects aged 25-64. In 1997, an additional sample of subjects aged 65-74 was conducted. The blood pressure, weight, and height of subjects were measured. By using self-administered questionnaires data were collected on medical history, socioeconomic factors, physical activity, smoking habits, and alcohol, coffee, and tea consumption. Higher coffee consumption was associated with higher body mass index, occupational physical activity and cigarette smoking, and lower blood pressure, education level, leisure time physical activity, tea consumption and alcohol use. Age, body mass index, systolic blood pressure and current smoking were positively associated with the risk of type 2 diabetes, however, education, and occupational, commuting and leisure time physical activity were inversely associated. The significant inverse association between coffee consumption and the risk of type 2 diabetes was found in both sexes but the association was stronger in women. Coffee consumption was significantly and inversely associated with fasting glucose, 2-hour plasma glucose, fasting insulin, impaired fasting glucose, impaired glucose regulation, and hyperinsulinemia among both men and women and with isolated impaired glucose tolerance among women. Serum gamma-glutamyltransferase modified the association between coffee consumption and incident diabetes. Among subjects with high serum -glutamyltransferase (>75th percentile), coffee consumption showed an inverse association for women, as well as men and women combined. An inverse association also occurred between coffee consumption and the risk of total, cardiovascular disease, and coronary heart disease mortality among patients with type 2 diabetes. The results of this study showed that habitual coffee consumption may be associated with a reduced risk of type 2 diabetes. Coffee consumption may have some effects on several markers of glycemia, and may lower the incident of type 2 diabetes in high normal serum -glutamyltransferase levels. Total, cardiovascular disease, and coronary heart disease mortality rate among subjects with type 2 diabetes may also be reduced by coffee consumption.
Resumo:
Type 1 diabetes (T1D) is a common, multifactorial disease with strong familial clustering. In Finland, the incidence of T1D among children aged 14 years or under is the highest in the world. The increase in incidence has been approximately 2.4% per year. Although most new T1D cases are sporadic the first-degree relatives are at an increased risk of developing the same disease. This study was designed to examine the familial aggregation of T1D and one of its serious complications, diabetic nephropathy (DN). More specifically the study aimed (1) to determine the concordance rates of T1D in monozygotic (MZ) and dizygotic (DZ) twins and to estimate the relative contributions of genetic and environmental factors to the variability in liability to T1D as well as to study the age at onset of diabetes in twins; (2) to obtain long-term empirical estimates of the risk of T1D among siblings of T1D patients and the factors related to this risk, especially the effect of age at onset of diabetes in the proband and the birth cohort effect; (3) to establish if DN is aggregating in a Finnish population-based cohort of families with multiple cases of T1D, and to assess its magnitude and particularly to find out whether the risk of DN in siblings is varying according to the severity of DN in the proband and/or the age at onset of T1D: (4) to assess the recurrence risk of T1D in the offspring of a Finnish population-based cohort of patients with childhood onset T1D, and to investigate potential sex-related effects in the transmission of T1D from the diabetic parents to their offspring as well as to study whether there is a temporal trend in the incidence. The study population comprised of the Finnish Young Twin Cohort (22,650 twin pairs), a population-based cohort of patients with T1D diagnosed at the age of 17 years or earlier between 1965 and 1979 (n=5,144) and all their siblings (n=10,168) and offspring (n=5,291). A polygenic, multifactorial liability model was fitted to the twin data. Kaplan-Meier analyses were used to provide the cumulative incidence for the development of T1D and DN. Cox s proportional hazards models were fitted to the data. Poisson regression analysis was used to evaluate temporal trends in incidence. Standardized incidence ratios (SIRs) between the first-degree relatives of T1D patients and background population were determined. The twin study showed that the vast majority of affected MZ twin pairs remained discordant. Pairwise concordance for T1D was 27.3% in MZ and 3.8% in DZ twins. The probandwise concordance estimates were 42.9% and 7.4%, respectively. The model with additive genetic and individual environmental effects was the best-fitting liability model to T1D, with 88% of the phenotypic variance due to genetic factors. The second paper showed that the 50-year cumulative incidence of T1D in the siblings of diabetic probands was 6.9%. A young age at diagnosis in the probands considerably increased the risk. If the proband was diagnosed at the age of 0-4, 5-9, 10-14, 15 or more, the corresponding 40-year cumulative risks were 13.2%, 7.8%, 4.7% and 3.4%. The cumulative incidence increased with increasing birth year. However, SIR among children aged 14 years or under was approximately 12 throughout the follow-up. The third paper showed that diabetic siblings of the probands with nephropathy had a 2.3 times higher risk of DN compared with siblings of probands free of nephropathy. The presence of end stage renal disease (ESRD) in the proband increases the risk three-fold for diabetic siblings. Being diagnosed with diabetes during puberty (10-14) or a few years before (5-9) increased the susceptibility for DN in the siblings. The fourth paper revealed that of the offspring of male probands, 7.8% were affected by the age of 20 compared with 5.3% of the offspring of female probands. Offspring of fathers with T1D have 1.7 times greater risk to be affected with T1D than the offspring of mothers with T1D. The excess risk in the offspring of male fathers manifested itself through the higher risk the younger the father was when diagnosed with T1D. Young age at onset of diabetes in fathers increased the risk of T1D greatly in the offspring, but no such pattern was seen in the offspring of diabetic mothers. The SIR among offspring aged 14 years or under remained fairly constant throughout the follow-up, approximately 10. The present study has provided new knowledge on T1D recurrence risk in the first-degree relatives and the risk factors modifying the risk. Twin data demonstrated high genetic liability for T1D and increased heritability. The vast majority of affected MZ twin pairs, however, remain discordant for T1D. This study confirmed the drastic impact of the young age at onset of diabetes in the probands on the increased risk of T1D in the first-degree relatives. The only exception was the absence of this pattern in the offspring of T1D mothers. Both the sibling and the offspring recurrence risk studies revealed dynamic changes in the cumulative incidence of T1D in the first-degree relatives. SIRs among the first-degree relatives of T1D patients seems to remain fairly constant. The study demonstrates that the penetrance of the susceptibility genes for T1D may be low, although strongly influenced by the environmental factors. Presence of familial aggregation of DN was confirmed for the first time in a population-based study. Although the majority of the sibling pairs with T1D were discordant for DN, its presence in one sibling doubles and presence of ESRD triples the risk of DN in the other diabetic sibling. An encouraging observation was that although the proportion of children to be diagnosed with T1D at the age of 4 or under is increasing, they seem to have a decreased risk of DN or at least delayed onset.
Resumo:
Dyslipidaemia, a major risk factor of cardiovascular disease (CVD), is prevalent not only in diabetic patients but also in individuals with impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). The aims of this study were: 1) to investigate lipid levels in relation to glucose in European (Study I) and Asian (Study II) populations without a prior history of diabetes; 2) to study the ethnic difference in lipid profiles controlling for glucose levels (Study III); 3) to estimate the relative risk for cardiovascular mortality (Study IV) and morbidity (Study V) associated with dyslipidaemia in individuals with different glucose tolerance status. Data of 15 European cohorts with 19 476 subjects (I and III) and 13 Asian cohorts with 19 763 individuals (II and III) from 21 countries aged 25-89 years, without a prior history of diabetes at enrollment, representing Asian Indian, Chinese, European, Japanese and Mauritian Indian, were compared. The lipid-CVD relationship was studied in 14 European cohorts of 17 763 men and women which provided with follow-up data on vital status, with 871 CVD deaths occurred during the average 10-year follow-up (IV). The impact of dyslipidaemia on incidence of coronary heart disease (CHD) in persons with different glucose categories (V) was further evaluated in 6 European studies, with 9087 individuals free of CHD at baseline and 457 developed CHD during follow-up. Z-scores of each lipid component were used in the data analysis (I, II, IV and V) to reduce the differences in methodology between studies. Analyses of cardiovascular mortality and morbidity were performed using Cox proportional hazards regression analysis adjusting for potential confounding factors. Within each glucose category, fasting plasma glucose (FPG) levels were correlated with increasing levels of triglycerides (TG), total cholesterol (TC), TC to high-density lipoprotein (HDL) ratio and non-HDL cholesterol (non-HDL-C) (p<0.05 in most of the ethnic groups) and inversely associated with HDL-C (p<0.05 in some, but not all, of the populations). The association of lipids with 2-h plasma glucose (2hPG) followed a similar pattern as that for the FPG, except the stronger association of HDL-C with 2hPG. Compared with Central & Northern (C & N) Europeans, multivariable adjusted odd ratios (95% CIs) for having low HDL-C were 4.74 (4.19-5.37), 5.05 (3.88-6.56), 3.07 (2.15-4.40) and 2.37 (1.67-3.35) in Asian Indian men but 0.12 (0.09-0.16), 0.07 (0.04-0.13), 0.11 (0.07-0.20) and 0.16 (0.08-0.32) in Chinese men who had normoglycaemia, prediabetes, undiagnosed and diagnosed diabetes, respectively. Similar results were obtained for women. The prevalence of low HDL-C remained higher in Asian Indians than in others even in individuals with LDL-C < 3 mmol/l. Dyslipidaemia was associated with increased CVD mortality or CHD incidence in individuals with isolated fasting hyperglycaemia or IFG, but not in those with isolated post-load hyperglycaemia or IGT. In conclusion, hyperglycaemia is associated with adverse lipid profiles in Europeans and Asians without a prior history of diabetes. There are distinct patterns of lipid profiles associated with ethnicity regardless of the glucose levels, suggesting that ethnic-specific strategies and guidelines on risk assessment and prevention of CVD are required. Dyslipidaemia predicts CVD in either diabetic or non-diabetic individuals defined based on the fasting glucose criteria, but not on the 2-hour criteria. The findings may imply considering different management strategies in people with fasting or post-load hyperglycaemia.