8 resultados para Global Warming Potential

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Achieving sustainable consumption patterns is a crucial step on the way towards sustainability. The scientific knowledge used to decide which priorities to set and how to enforce them has to converge with societal, political, and economic initiatives on various levels: from individual household decision-making to agreements and commitments in global policy processes. The aim of this thesis is to draw a comprehensive and systematic picture of sustainable consumption and to do this it develops the concept of Strong Sustainable Consumption Governance. In this concept, consumption is understood as resource consumption. This includes consumption by industries, public consumption, and household consumption. Next to the availability of resources (including the available sink capacity of the ecosystem) and their use and distribution among the Earth’s population, the thesis also considers their contribution to human well-being. This implies giving specific attention to the levels and patterns of consumption. Methods: The thesis introduces the terminology and various concepts of Sustainable Consumption and of Governance. It briefly elaborates on the methodology of Critical Realism and its potential for analysing Sustainable Consumption. It describes the various methods on which the research is based and sets out the political implications a governance approach towards Strong Sustainable Consumption may have. Two models are developed: one for the assessment of the environmental relevance of consumption activities, another to identify the influences of globalisation on the determinants of consumption opportunities. Results: One of the major challenges for Strong Sustainable Consumption is that it is not in line with the current political mainstream: that is, the belief that economic growth can cure all our problems. So, the proponents have to battle against a strong headwind. Their motivation however is the conviction that there is no alternative. Efforts have to be taken on multiple levels by multiple actors. And all of them are needed as they constitute the individual strings that together make up the rope. However, everyone must ensure that they are pulling in the same direction. It might be useful to apply a carrot and stick strategy to stimulate public debate. The stick in this case is to create a sense of urgency. The carrot would be to articulate better the message to the public that a shrinking of the economy is not as much of a disaster as mainstream economics tends to suggest. In parallel to this it is necessary to demand that governments take responsibility for governance. The dominant strategy is still information provision. But there is ample evidence that hard policies like regulatory instruments and economic instruments are most effective. As for Civil Society Organizations it is recommended that they overcome the habit of promoting Sustainable (in fact green) Consumption by using marketing strategies and instead foster public debate in values and well-being. This includes appreciating the potential of social innovation. A countless number of such initiatives are on the way but their potential is still insufficiently explored. Beyond the question of how to multiply such approaches, it is also necessary to establish political macro structures to foster them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the 21st century, human-induced global climate change has been highlighted as one of the most serious threats to ecosystems worldwide. According to global climate scenarios, the mean temperature in Finland is expected to increase by 1.8 4.0°C by the end of the century. The regional and seasonal change in temperature has predicted to be spatially and temporally asymmetric, where the High-Arctic and Antarctic areas and winter and spring seasons have been projected to face the highest temperature increase. To understand how species respond to the ongoing climate change, we need to study how climate affects species in different phases of their life cycle. The impact of climate on breeding and migration of eight large-sized bird species was studied in this thesis, taking food availability into account. The findings show that climatic variables have considerable impact on the life-history traits of large-sized birds in northern Europe. The magnitude of climatic effects on migration and breeding was comparable with that of food supply, conventionally regarded as the main factor affecting these life-history traits. Based on the results of this thesis and the current climate scenarios, the following not mutually exclusive responses are possible in the near future. Firstly, asymmetric climate change may result in a mistiming of breeding because mild winters and early spring may lead to earlier breeding, whereas offspring are hatching into colder conditions which elevate mortality. Secondly, climate induced responses can differ between species with different breeding tactics (income vs. capital breeding), so that especially capital breeders can gain advantage on global warming as they can sustain higher energy resources. Thirdly, increasing precipitation has the potential to reduce the breeding success of many species by exposing nestlings to more severe post-hatching conditions and hampering the hunting conditions of parents. Fourthly, decreasing ice cover and earlier ice-break in the Baltic Sea will allow earlier spring migration in waterfowl. In eiders, this can potentially lead to more productive breeding. Fifthly, warming temperatures can favour parents preparing for breeding and increase nestling survival. Lastly, the climate-induced phenological changes in life history events will likely continue. Furthermore, interactions between climate and food resources can be complex and interact with each other. Eiders provide an illustrative example of this complexity, being caught in the crossfire between more benign ice conditions and lower salinity negatively affecting their prime food resource. The general conclusion is that climate is controlling not only the phenology of the species but also their reproductive output, thus affecting the entire population dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alfavirukset ovat positiivissäkeisiä RNA-viruksia, jotka kuuluvat Togaviridea –heimoon. Alfaviruksia levittävät Aedes –suvun hyttyset ja niitä esiintyy Etelämanteretta lukuunottamatta kaikilla mantereilla. Alfaviruksia on tähän mennessä löydetty 29 lajia ja ne voidaan jakaa uuden ja vanhan maailman viruksiin niiden maantieteellisen esiintyvyyden ja taudinaiheuttamiskyvyn mukaan. Chikunkunyavirus (CHIKV) on yksi vanhan maailman alfaviruksista, jota esiintyy muun muassa Afrikassa ja Aasiassa. Ilmaston lämmettyä se on leviämässä myös eteläiseen Eurooppaan. Ihmisessä se aiheuttaa muun muassa kuumetta, päänsärkyä, ihottumaa ja niveltulehdusta, joka voi kestää useita vuosia ja ne voivat olla hyvinkin kivuliaita. Pienillä lapsilla chikungunya on todettu aiheuttavan myös neurologisia oireita kuten aivotulehdusta. Alfaviruksen genomi koodaa neljää rakenneproteiinia ja neljää replikaatioproteiinia. Replikaatioproteiineista nsP3 sisältää makrodomeeniosan. Makrodomeeniproteiinit ovat eliökunnassa konservoituneita, mutta makrodomeeniproteiinien tarkkaa merkitystä ei vielä tunneta. Makrodomeenien on osoitettu sitovan ADP-riboosia ja sen johdannaisia ja alfaviruksen nsP3-proteiinin on osoitettu olevan tärkeä osa viruksen replikaatiossa. Tutkimuksen tavoitteena oli tutkia makrodomeeniproteiiniin sitoutuvien yhdisteiden käyttöä antiviraalisena yhdisteinä. Tietokonemallinnuksella valittiin antiviraalitutkimuksiin 45 yhdistettä, joiden oletettiin sitoutuvan makrodomeeniproteiiniin. Kilpailevassa sitoutumiskokeessa viisi yhdistettä esti yli 50 % poly-ADP-riboosia (PAR) sitoutumasta MDO1-makrodomeeniproteiiniin, jolla tietokonemallinnus oli tehty. SFV-makrodomeeniproteiinilla tehdyssä kokeessa vain yksi yhdiste esti yli 50 % poly-ADP-riboosin sitoutumisen. SFV-antiviraalikokeessa seitsemällä yhdisteellä inhibitioprosentti oli yli 50 %. Näillä yhdisteillä ei kuitenkaan ollut merkittävää vaikutusta poly-ADP-riboosin sitoutumisen estossa. CHIKV-replikonikokeessa yli 50 % inhibitioprosentti oli viidellä yhdisteellä. Muiden mahdollisia vaikutusmekanismeja tutkittiin selvittämällä estävätkö yhdisteet virusta pääsemästä solun sisään. Tässä kokeessa tutkituista yhdisteistä lähes kaikilla oli vaikutusta viruksen soluun pääsyn estossa. Yleisesti ottaen kyky estää PAR:n sitoutuminen makrodomeeniproteiineihin ja antiviraaliset vaikutukset eivät korreloineet keskenään tutkittavilla yhdisteillä. Vaikka antiviraalista vaikutusta omaavat yhdisteet eivät osoittaneetkaan makrodomeeni-inhibiitiota, työssä löydettiin potentiaalisia antiviraalisia yhdisteitä joiden käyttö viruksen soluun pääsyn estäjinä antaa aihetta jatkotutkimuksille.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Snow cover is very sensitive to climate change and has a large feedback effect on the climate system due to the high albedo. Snow covers almost all surfaces in Antarctica and small changes in snow properties can mean large changes in absorbed radiation. In the ongoing discussion of climatic change, the mass balance of Antarctica has received increasing focus during recent decades, since its reaction to global warming strongly influences sea-level change. The aim of the present work was to examine the spatial and temporal variations in the physical and chemical characteristics of surface snow and annual accumulation rates in western Dronning Maud Land, Antarctica. The data were collected along a 350-km-long transect from the coast to the plateau during the years 1999-2004 as a part of the Finnish Antarctic Research Programme (FINNARP). The research focused on the most recent annual accumulation in the coastal area. The results show that the distance from the sea, and the moisture source, was the most predominant factor controlling the variations in both physical (conductivity, grain size, oxygen isotope ratio and accumulation) and chemical snow properties. The sea-salt and sulphur-containing components predominated in the coastal region. The local influences of nunataks and topographic highs were also visible on snow. The variations in all measured properties were wide within single sites mostly due to redistribution by winds and sastrugi topography, which reveals the importance of the spatially representative measurements. The mean accumulations occurred on the ice shelf, in the coastal region and on the plateau: 312 ± 28, 215 ± 43 and 92 ± 25 mm w.e., respectively. Depth hoar layers were usually found under the thin ice crust and were associated with a low dielectric constant and high concentrations of nitrate. Taking into account the vast size of the Antarctic ice sheet and its geographic characteristics, it is important to extend investigation of the distribution of surface snow properties and accumulation to provide well-documented data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Antarctic system comprises of the continent itself, Antarctica, and the ocean surrounding it, the Southern Ocean. The system has an important part in the global climate due to its size, its high latitude location and the negative radiation balance of its large ice sheets. Antarctica has also been in focus for several decades due to increased ultraviolet (UV) levels caused by stratospheric ozone depletion, and the disintegration of its ice shelves. In this study, measurements were made during three Austral summers to study the optical properties of the Antarctic system and to produce radiation information for additional modeling studies. These are related to specific phenomena found in the system. During the summer of 1997-1998, measurements of beam absorption and beam attenuation coefficients, and downwelling and upwelling irradiance were made in the Southern Ocean along a S-N transect at 6°E. The attenuation of photosynthetically active radiation (PAR) was calculated and used together with hydrographic measurements to judge whether the phytoplankton in the investigated areas of the Southern Ocean are light limited. By using the Kirk formula the diffuse attenuation coefficient was linked to the absorption and scattering coefficients. The diffuse attenuation coefficients (Kpar) for PAR were found to vary between 0.03 and 0.09 1/m. Using the values for KPAR and the definition of the Sverdrup critical depth, the studied Southern Ocean plankton systems were found not to be light limited. Variabilities in the spectral and total albedo of snow were studied in the Queen Maud Land region of Antarctica during the summers of 1999-2000 and 2000-2001. The measurement areas were the vicinity of the South African Antarctic research station SANAE 4, and a traverse near the Finnish Antarctic research station Aboa. The midday mean total albedos for snow were between 0.83, for clear skies, and 0.86, for overcast skies, at Aboa and between 0.81 and 0.83 for SANAE 4. The mean spectral albedo levels at Aboa and SANAE 4 were very close to each other. The variations in the spectral albedos were due more to differences in ambient conditions than variations in snow properties. A Monte-Carlo model was developed to study the spectral albedo and to develop a novel nondestructive method to measure the diffuse attenuation coefficient of snow. The method was based on the decay of upwelling radiation moving horizontally away from a source of downwelling light. This was assumed to have a relation to the diffuse attenuation coefficient. In the model, the attenuation coefficient obtained from the upwelling irradiance was higher than that obtained using vertical profiles of downwelling irradiance. The model results were compared to field measurements made on dry snow in Finnish Lapland and they correlated reasonably well. Low-elevation (below 1000 m) blue-ice areas may experience substantial melt-freeze cycles due to absorbed solar radiation and the small heat conductivity in the ice. A two-dimensional (x-z) model has been developed to simulate the formation and water circulation in the subsurface ponds. The model results show that for a physically reasonable parameter set the formation of liquid water within the ice can be reproduced. The results however are sensitive to the chosen parameter values, and their exact values are not well known. Vertical convection and a weak overturning circulation is generated stratifying the fluid and transporting warmer water downward, thereby causing additional melting at the base of the pond. In a 50-year integration, a global warming scenario mimicked by a decadal scale increase of 3 degrees per 100 years in air temperature, leads to a general increase in subsurface water volume. The ice did not disintegrate due to the air temperature increase after the 50 year integration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soilla on merkittävä rooli ilmastonmuutoksen hillitsemisessä suuren hiilivarastonsa sekä ekosysteemin ja ilmakehän välisen kaasunvaihdon ansiosta. Ilmastonmuutoksen ennustetaan vaikuttavan suokasvillisuuteen ja suon toimintaan epäsuorasti. Vedenpinnan ennustetaan laskevan 14–21 cm johtuen kasveista ja avoimilta pinnoilta tapahtuvan haihdunnan lisääntymisestä lämpötilan noustessa, mikäli sadanta ei lisäänny. Aiemmat vedenpinnan laskun jälkeistä kasvillisuutta seuranneet tutkimukset ovat osoittaneet, että putkilokasvit hyötyvät alhaisemmasta vedenpinnan tasosta ja että kuljuun sopeutuneet rahkasammalet kärsivät kuivuneista oloista. Kasvillisuuden runsaussuhteiden muuttumisen lisäksi kasviyhteisöjen monimuotoisuus vähenee. Erityisen herkkiä vedenpinnan laskulle ovat olleet välipinta- ja kuljurahkasammalet ja sarat. Funktionaalisten kasviryhmien vasteiden selvittämiksesi käytettiin BACI (before-after-control-impact) –tutkimusotetta. Tutkimuksessa oli kolme verrokkialaa ja kolme käsittelyalaa, joissa vedenpintaa oli laskettu 14–21 senttimetriin. Lisäksi vertailukohdaksi tutkimuksessa oli mukana kolme alaa, joissa oli tehty metsäojitus n. 50 vuotta sitten. Nämä toistot sijaitsivat meso-, oligo ombrotrofisilla suotyypeillä Oriveden Lakkasuolla. Kasvillisuus kartoitettiin ja vedenpinnat mitattiin aloilta ennen käsittelyä vuonna 2000 sekä vuosina 2001–2003 ja 2009. Aineisto analysoitiin TWINSPAN- (PC-Ord), PRC ja DCA (CANOCO)-monimuuttujamenetelmillä. Tulokset osoittivat, että verrokki- ja käsittelyalat olivat samanlaisia lähtökohdiltaan, joten niitä voitiin käsittelyn jälkeen verrata toisiinsa. Kasvillisuuden rakenne vaihteli vuosien välillä myös verrokkialoilla, mikä osoittaa kasvien sopeutumiskyvyn muuttuviin sääoloihin (lämpötila, sademäärä). Vuosi 2003 erottui tutkimuksessa alhaisella vedenpinnantasolla, mutta toisaalta myös ainavihantien varpujen suuren peittävyyden osalta. Vuoteen 2009 mennessä kasvillisuuden erityisesti sarojen peittävyys väheni. Ravinteikkaimmilla toistoilla kasvillisuuden vasteet vaikuttivat olevan vahvemmat kuin vähäravinteisilla toistoilla. Kasviryhmistä kulju- ja välipintasammalilla oli vahvimmat vasteetvedenpinnan laskuun ja mätäslajeilla heikoimmat. Tulosten mukaan kasviryhmien vasteet vaihtelevat riippuen tarkasteltavasta aikajaksosta: ensimmäiset kolme vuotta käsittelyn jälkeen suo oli häiriötilassa ja vasta sen jälkeen kasvillisuus sopeutui muuttuneisiin oloihin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periglacial processes act on cold, non-glacial regions where the landscape deveploment is mainly controlled by frost activity. Circa 25 percent of Earth's surface can be considered as periglacial. Geographical Information System combined with advanced statistical modeling methods, provides an efficient tool and new theoretical perspective for study of cold environments. The aim of this study was to: 1) model and predict the abundance of periglacial phenomena in subarctic environment with statistical modeling, 2) investigate the most import factors affecting the occurence of these phenomena with hierarchical partitioning, 3) compare two widely used statistical modeling methods: Generalized Linear Models and Generalized Additive Models, 4) study modeling resolution's effect on prediction and 5) study how spatially continous prediction can be obtained from point data. The observational data of this study consist of 369 points that were collected during the summers of 2009 and 2010 at the study area in Kilpisjärvi northern Lapland. The periglacial phenomena of interest were cryoturbations, slope processes, weathering, deflation, nivation and fluvial processes. The features were modeled using Generalized Linear Models (GLM) and Generalized Additive Models (GAM) based on Poisson-errors. The abundance of periglacial features were predicted based on these models to a spatial grid with a resolution of one hectare. The most important environmental factors were examined with hierarchical partitioning. The effect of modeling resolution was investigated with in a small independent study area with a spatial resolution of 0,01 hectare. The models explained 45-70 % of the occurence of periglacial phenomena. When spatial variables were added to the models the amount of explained deviance was considerably higher, which signalled a geographical trend structure. The ability of the models to predict periglacial phenomena were assessed with independent evaluation data. Spearman's correlation varied 0,258 - 0,754 between the observed and predicted values. Based on explained deviance, and the results of hierarchical partitioning, the most important environmental variables were mean altitude, vegetation and mean slope angle. The effect of modeling resolution was clear, too coarse resolution caused a loss of information, while finer resolution brought out more localized variation. The models ability to explain and predict periglacial phenomena in the study area were mostly good and moderate respectively. Differences between modeling methods were small, although the explained deviance was higher with GLM-models than GAMs. In turn, GAMs produced more realistic spatial predictions. The single most important environmental variable controlling the occurence of periglacial phenomena was mean altitude, which had strong correlations with many other explanatory variables. The ongoing global warming will have great impact especially in cold environments on high latitudes, and for this reason, an important research topic in the near future will be the response of periglacial environments to a warming climate.