1 resultado para Generalised model
em Helda - Digital Repository of University of Helsinki
Resumo:
This study examines the properties of Generalised Regression (GREG) estimators for domain class frequencies and proportions. The family of GREG estimators forms the class of design-based model-assisted estimators. All GREG estimators utilise auxiliary information via modelling. The classic GREG estimator with a linear fixed effects assisting model (GREG-lin) is one example. But when estimating class frequencies, the study variable is binary or polytomous. Therefore logistic-type assisting models (e.g. logistic or probit model) should be preferred over the linear one. However, other GREG estimators than GREG-lin are rarely used, and knowledge about their properties is limited. This study examines the properties of L-GREG estimators, which are GREG estimators with fixed-effects logistic-type models. Three research questions are addressed. First, I study whether and when L-GREG estimators are more accurate than GREG-lin. Theoretical results and Monte Carlo experiments which cover both equal and unequal probability sampling designs and a wide variety of model formulations show that in standard situations, the difference between L-GREG and GREG-lin is small. But in the case of a strong assisting model, two interesting situations arise: if the domain sample size is reasonably large, L-GREG is more accurate than GREG-lin, and if the domain sample size is very small, estimation of assisting model parameters may be inaccurate, resulting in bias for L-GREG. Second, I study variance estimation for the L-GREG estimators. The standard variance estimator (S) for all GREG estimators resembles the Sen-Yates-Grundy variance estimator, but it is a double sum of prediction errors, not of the observed values of the study variable. Monte Carlo experiments show that S underestimates the variance of L-GREG especially if the domain sample size is minor, or if the assisting model is strong. Third, since the standard variance estimator S often fails for the L-GREG estimators, I propose a new augmented variance estimator (A). The difference between S and the new estimator A is that the latter takes into account the difference between the sample fit model and the census fit model. In Monte Carlo experiments, the new estimator A outperformed the standard estimator S in terms of bias, root mean square error and coverage rate. Thus the new estimator provides a good alternative to the standard estimator.