6 resultados para Gas detection
em Helda - Digital Repository of University of Helsinki
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Rare-gas chemistry is of growing interest, and the recent advances include the "insertion" of a Xe atom into OH and water in the rare-gas hydrides HXeO and HXeOH. The insertion of Xe atoms into the H-C bonds of hydrocarbons was also demonstrated for HXeCC, HXeCCH and HXeCCXeH, the last of which was the first rare-gas hydride containing two rare-gas atoms. We describe the preparation and characterization of a new rare-gas compound, HXeOXeH. HXeOXeH was prepared in solid xenon by photolysis of a suitable precursor, for example water, and subsequent mobilization of the photoproducts. The experimental identification was carried out by FTIR spectroscopy, isotopic substitution and by use of various precursors. The photolytical and thermal stability of the new rare-gas hydride was also studied. The experimental work was supported by extensive quantum chemical calculations provided by our co-workers. HXeOXeH forms in a cryogenic xenon matrix from neutral O and H atoms in a two-step diffusion-controlled process involving HXeO as an intermediate [reactions (1) and (2)]. This formation mechanism is unique in that a rare-gas hydride is formed from another rare-gas hydride. H + Xe + O → HXeO (1) HXeO + Xe + H → HXeOXeH (2) Similarly to other rare-gas hydrides, HXeOXeH has a strongly IR-active H-Xe stretching vibration, allowing its spectral detection at 1379.3 cm-1. HXeOXeH is a very high-energy metastable species, yet thermally more stable than many other rare-gas hydrides. The calculated bending barrier of 0.57 eV, is not enough to explain the observed stability, and HXeOXeH might be affected by additional stabilization from the solid xenon environment. Chemical bonding between xenon and environmentally abundant species like water is of particular importance due to the “missing-xenon” problem. The relatively high thermal stability of HXeOXeH compared to other oxygen containing rare-gas compounds is relevant in this respect. Our work also raises the possibility of polymeric (–Xe–O)n networks, similarly to the computationally studied (XeCC)n polymers.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.
Resumo:
The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.
Resumo:
The auditory system can detect occasional changes (deviants) in acoustic regularities without the need for subjects to focus their attention on the sound material. Deviant detection is reflected in the elicitation of the mismatch negativity component (MMN) of the event-related potentials. In the studies presented in this thesis, the MMN is used to investigate the auditory abilities for detecting similarities and regularities in sound streams. To investigate the limits of these processes, professional musicians have been tested in some of the studies. The results show that auditory grouping is already more advanced in musicians than in nonmusicians and that the auditory system of musicians can, unlike that of nonmusicians, detect a numerical regularity of always four tones in a series. These results suggest that sensory auditory processing in musicians is not only a fine tuning of universal abilities, but is also qualitatively more advanced than in nonmusicians. In addition, the relationship between the auditory change-detection function and perception is examined. It is shown that, contrary to the generally accepted view, MMN elicitation does not necessarily correlate with perception. The outcome of the auditory change-detection function can be implicit and the implicit knowledge of the sound structure can, after training, be utilized for behaviorally correct intuitive sound detection. These results illustrate the automatic character of the sensory change detection function.