15 resultados para GASEOUS WASTES

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for mutual recognition of accurate measurement results made by competent laboratories has been very widely accepted at the international level e.g., at the World Trade Organization. A partial solution to the problem was made by the International Committee for Weights and Measures (CIPM) in setting up the Mutual Recognition Arrangement (CIPM MRA), which was signed by National Metrology Institutes (NMI) around the world. The core idea of the CIPM MRA is to have global arrangements for the mutual acceptance of the calibration certificates of National Metrology Institutes. The CIPM MRA covers all the fields of science and technology for which NMIs have their national standards. The infrastructure for the metrology of the gaseous compounds carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) has been constructed at the national level at the Finnish Meteorological Institute (FMI). The calibration laboratory at the FMI was constructed for providing calibration services for air quality measurements and to fulfil the requirements of a metrology laboratory. The laboratory successfully participated, with good results, in the first comparison project, which was aimed at defining the state of the art in the preparation and analysis of the gas standards used by European metrology institutes and calibration laboratories in the field of air quality. To confirm the competence of the laboratory, the international external surveillance study was conducted at the laboratory. Based on the evidence, the Centre for Metrology and Accreditation (MIKES) designated the calibration laboratory at the Finnish Meteorological Institute (FMI) as a National Standard Laboratory in the field of air quality. With this designation, the MIKES-FMI Standards Laboratory became a member of CIPM MRA, and Finland was brought into the internationally-accepted forum in the field of gas metrology. The concept of ‘once measured - everywhere accepted’ is the leading theme of the CIPM MRA. The calibration service of the MIKES-FMI Standards Laboratory realizes the SI traceability system for the gas components, and is constructed to enable it to meet the requirements of the European air quality directives. In addition, all the relevant uncertainty sources that influence the measurement results have been evaluated, and the uncertainty budgets for the measurement results have been created.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is essential to have a thorough understanding of the sources and sinks of oxidized nitrogen (NOy) in the atmosphere, since it has a strong influence on the tropospheric chemistry and the eutrophication of ecosystems. One unknown component in the balance of gaseous oxidized nitrogen is vegetation. Plants absorb nitrogenous species from the air via the stomata, but it is not clear whether plants can also emit them at low ambient concentrations. The possible emissions are small and difficult to measure. The aim of this thesis was to analyse an observation made in southern Finland at the SMEAR II station: solar ultraviolet radiation (UV) induced NOy emissions in chambers measuring the gas exchange of Scots pine (Pinus sylvestris L.) shoots. Both measuring and modelling approaches were used in the study. The measurements were performed under noncontrolled field conditions at low ambient NOy concentrations. The chamber blank i.e. artefact NOy emissions from the chamber walls, was dependent on the UV irradiance and increased with time after renewing the Teflon film on chamber surfaces. The contribution of each pine shoot to the total NOy emissions in the chambers was determined by testing whether the emissions decrease when the shoots are removed from their chambers. Emissions did decrease, but only when the chamber interior was exposed to UV radiation. It was concluded that also the pine shoots emit NOy. The possible effects of transpiration on the chamber blank are discussed in the summary part of the thesis, based on previously unpublished data. The possible processes underlying the UV-induced NOy emissions were reviewed. Surface reactions were more likely than metabolic processes. Photolysis of nitrate deposited on the needles may have generated the NOy emissions; the measurements supported this hypothesis. In that case, the emissions apparently would consist mainly of nitrogen dioxide (NO2), nitric oxide (NO) and nitrous acid (HONO). Within studies on NOy exchange of plants, the gases most frequently studied are NO2 and NO (=NOx). In the present work, the implications of the emissions for the NOx exchange of pine were analysed with a model including both NOy emissions and NOy absorption. The model suggested that if the emissions exist, pines can act as an NOx source rather than a sink, even under relatively high ambient concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis deals with the syntheses of olefin homo- and copolymers using different kind of metallocene catalyst. Ethene, propene, 1-hexene, 1-hexadecene, vinylcyclohexane and phenylnorbornene were homo- or copolymerized with the catalysts. The unbridged benzyl substituted zirconium dichloride catalysts (1-4), ansa- bridged acenaphtyl substituted zirconium dichloride catalysts, ( 5, 6), rac- and meso-ethylene-bis(1-indenyl)zirconium dichlorides, (rac- and meso-8), rac-ethylene-bis(1-indenyl)hafnium dichloride, ( 12), bis(9-fluorenyl)hafnium dichloride (14 ) enantiomerically pure (R)- phenylethyl[(9-fluorenyl-1-indenyl)]ZrCl2, (11), 14 and asymmetric dimethylsilyl[(3-benzylindenyl-(2-methylbenzen[e]indenyl)] zirconium dichloride, (13), were prepared in our laboratory. Dimethylsilyl-bis(1-indenyl)zirconium dichloride, (9), isopropylidene(9-fluorenyl-cyclopentadienyl)zirconium dichloride, (10), and were obtained commercially. The solid-state structures of the catalysts rac- and meso-1 were determined by X-ray crystallography. Computational methods were used for the structure optimization of the catalyst rac- and meso-1 in order to compare the theoretical calculations with the experimental results. Polymerization experiments were conducted in a highly purified autoclave system using low pressures (< 5 bar) of gaseous monomers. The experiments were designed to attain the optimal catalytic activity and a uniform copolymer composition. The prepared homo- and copolymers were characterized by the gel permeation chromatography, GPC, differential scanning calorimetry, DSC, nuclear magnetic resonance, NMR, and Fourier transform infrared spectrometry, FTIR . Molar mass (Mw, Mn), molar mass distribution (Mw/Mn), tacticity, comonomer content, melting temperature, glass transition temperature, and end group structures and content were determined. A special attention was paid on the correlation of the polymer properties with the catalyst structures and polymerization conditions. An intramolecular phenyl coordination was found in phenyl substituted benzyl zirconocenes 1-3 explaining the decreased activity of the catalysts. Novel copolymers poly(propene-co-phenylnorbornene) and poly(propene co-vinylcyclohexane), were synthesized and high molar mass poly(ethene-co-1-hexene) and poly(ethene-co-1-hexadecene) copolymers with elastic properties were prepared. Activation of a hafnocene catalyst was studied with UV-Vis spectrometry and activation process for the synthesis of ultra high molar mass poly(1-hexene) was found out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Transition Radiation Tracker (TRT) of the ATLAS experiment at the LHC is part of the Inner Detector. It is designed as a robust and powerful gaseous detector that provides tracking through individual drift-tubes (straws) as well as particle identification via transition radiation (TR) detection. The straw tubes are operated with Xe-CO2-O2 70/27/3, a gas that combines the advantages of efficient TR absorption, a short electron drift time and minimum ageing effects. The modules of the barrel part of the TRT were built in the United States while the end-cap wheels are assembled at two Russian institutes. Acceptance tests of barrel modules and end-cap wheels are performed at CERN before assembly and integration with the Semiconductor Tracker (SCT) and the Pixel Detector. This thesis first describes simulations the TRT straw tube. The argon-based acceptance gas mixture as well as two xenon-based operating gases are examined for its properties. Drift velocities and Townsend coefficients are computed with the help of the program Magboltz and used to study electron drift and multiplication in the straw using the software Garfield. The inclusion of Penning transfers in the avalanche process leads to remarkable agreements with experimental data. A high level of cleanliness in the TRT s acceptance test gas system is indispensable. To monitor gas purity, a small straw tube detector has been constructed and extensively used to study the ageing behaviour of the straw tube in Ar-CO2. A variety of ageing tests are presented and discussed. Acceptance tests for the TRT survey dimensions, wire tension, gas-tightness, high-voltage stability and gas gain uniformity along each individual straw. The thesis gives details on acceptance criteria and measurement methods in the case of the end-cap wheels. Special focus is put on wire tension and straw straightness. The effect of geometrically deformed straws on gas gain and energy resolution is examined in an experimental setup and compared to simulation studies. An overview of the most important results from the end-cap wheels tested up to this point is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agriculture is an economic activity that heavily relies on the availability of natural resources. Through its role in food production agriculture is a major factor affecting public welfare and health, and its indirect contribution to gross domestic product and employment is significant. Agriculture also contributes to numerous ecosystem services through management of rural areas. However, the environmental impact of agriculture is considerable and reaches far beyond the agroecosystems. The questions related to farming for food production are, thus, manifold and of great public concern. Improving environmental performance of agriculture and sustainability of food production, sustainabilizing food production, calls for application of wide range of expertise knowledge. This study falls within the field of agro-ecology, with interphases to food systems and sustainability research and exploits the methods typical of industrial ecology. The research in these fields extends from multidisciplinary to interdisciplinary and transdisciplinary, a holistic approach being the key tenet. The methods of industrial ecology have been applied extensively to explore the interaction between human economic activity and resource use. Specifically, the material flow approach (MFA) has established its position through application of systematic environmental and economic accounting statistics. However, very few studies have applied MFA specifically to agriculture. The MFA approach was used in this thesis in such a context in Finland. The focus of this study is the ecological sustainability of primary production. The aim was to explore the possibilities of assessing ecological sustainability of agriculture by using two different approaches. In the first approach the MFA-methods from industrial ecology were applied to agriculture, whereas the other is based on the food consumption scenarios. The two approaches were used in order to capture some of the impacts of dietary changes and of changes in production mode on the environment. The methods were applied at levels ranging from national to sector and local levels. Through the supply-demand approach, the viewpoint changed between that of food production to that of food consumption. The main data sources were official statistics complemented with published research results and expertise appraisals. MFA approach was used to define the system boundaries, to quantify the material flows and to construct eco-efficiency indicators for agriculture. The results were further elaborated for an input-output model that was used to analyse the food flux in Finland and to determine its relationship to the economy-wide physical and monetary flows. The methods based on food consumption scenarios were applied at regional and local level for assessing feasibility and environmental impacts of relocalising food production. The approach was also used for quantification and source allocation of greenhouse gas (GHG) emissions of primary production. GHG assessment provided, thus, a means of crosschecking the results obtained by using the two different approaches. MFA data as such or expressed as eco-efficiency indicators, are useful in describing the overall development. However, the data are not sufficiently detailed for identifying the hot spots of environmental sustainability. Eco-efficiency indicators should not be bluntly used in environmental assessment: the carrying capacity of the nature, the potential exhaustion of non-renewable natural resources and the possible rebound effect need also to be accounted for when striving towards improved eco-efficiency. The input-output model is suitable for nationwide economy analyses and it shows the distribution of monetary and material flows among the various sectors. Environmental impact can be captured only at a very general level in terms of total material requirement, gaseous emissions, energy consumption and agricultural land use. Improving environmental performance of food production requires more detailed and more local information. The approach based on food consumption scenarios can be applied at regional or local scales. Based on various diet options the method accounts for the feasibility of re-localising food production and environmental impacts of such re-localisation in terms of nutrient balances, gaseous emissions, agricultural energy consumption, agricultural land use and diversity of crop cultivation. The approach is applicable anywhere, but the calculation parameters need to be adjusted so as to comply with the specific circumstances. The food consumption scenario approach, thus, pays attention to the variability of production circumstances, and may provide some environmental information that is locally relevant. The approaches based on the input-output model and on food consumption scenarios represent small steps towards more holistic systemic thinking. However, neither one alone nor the two together provide sufficient information for sustainabilizing food production. Environmental performance of food production should be assessed together with the other criteria of sustainable food provisioning. This requires evaluation and integration of research results from many different disciplines in the context of a specified geographic area. Foodshed area that comprises both the rural hinterlands of food production and the population centres of food consumption is suggested to represent a suitable areal extent for such research. Finding a balance between the various aspects of sustainability is a matter of optimal trade-off. The balance cannot be universally determined, but the assessment methods and the actual measures depend on what the bottlenecks of sustainability are in the area concerned. These have to be agreed upon among the actors of the area

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatic embryogenesis (SE) is an asexual form of plant propagation that occurs in nature and mimics many of the events of sexual reproduction. Pinus sylvestris (L.) is an important source of timber in Northern Eurasia but it is recalcitrant to somatic embryogenesis. Several factors important for the success of the P. sylvestris embryogenic cultures have not been thoroughly investigated. In this study, we examined the effects of parental genotypes on the SE in P. sylvestris, the involvement of the gaseous plant growth regulator, ethylene in SE, and also biotic effects on somatic embryos as well as on seedlings. We tested parental effects on immature embryo initiation for different media, storage periods, and on the maturation process. Maternal effects were found to be crucial for SE in the absence of paternal effects. No maternal-paternal interaction was observed at any stage of somatic embryo production. Additionally the role of ethylene at different developmental stages of SE was investigated. Two ACC synthase genes, PsACS1 and PsACS2, were isolated and characterized. PsACS1 was expressed during the proliferation stage in all tested genotypes, whereas PsACS2 was only expressed in somatic embryos of each genotype. Ethylene production in embryos at stage 3 was significantly higher than the other stages. In a parallel study, the response of somatic embryos to fungal elicitors was investigated. Three fungi, a mutualistic ectomycorrhizal (ECM) fungus (Suillus bovinus), a weak Scots pine pathogen (Heterobasidion parviporum) and a strong pathogen (H. annosum) were used. The gene expression patterns for embryos exposed to the H. parviporum elicitor were found to be similar to that documented for S. bovinus among the tested genes. By contrast somatic embryos exposed to the H. annosum elicitor had a different pattern of regulation which was marked by a delayed response, and in some cases death of the embryos. Furthermore, interaction without direct contact between P. sylvestris seedlings and microbes (mutualistic and pathogenic fungus, cyanobacterium) were investigated. Several novel genes expressed in seedlings treated with ECM fungus were isolated which suggested that physical contact is not necessary for elicitation of host responses. The results suggest that somatic embryos and seedlings of P. sylvestris are genetically well equipped to respond to fungal elicitor/exudates and could serve as a suitable model for reproducible molecular studies in conifer tree patho- and symbiotic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effective heating values of the above and below ground biomass components of mature Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy birch (Betula pubescens), silver birch (Betula pendula), grey alder (Alnus incana), black alder (Alnus glutinosa) and trembling aspen (Populus tremula) were studied. Each sample tree was divided into wood, bark and foliage components. Bomb calorimetry was used to determine the calorimetric heating values. The species is a significant factor in the heating value of individual tree components. The heating value of the wood proper is highest in conifers. Broad-leaved species have a higher heating value of bark than conifers. The species factor diminishes when the weighted heating value of crown, whole stems or stump-root-system are considered. The crown material has a higher heating value per unit weight in comparison with fuelwood from small-sized stems or wholetrees. The additional advantages of coniferous crown material are that it is a non-industrial biomass resource and is readily available. The variability of both the chemical composition and the heating value is small in any given tree component of any species. However, lignin, carbohydrate and extractive content were found to vary from one part of the tree to another and to correlate with the heating value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a method to deposit thin films from gaseous precursors to the substrate layer-by-layer so that the film thickness can be tailored with atomic layer accuracy. Film tailoring is even further emphasized with selective-area ALD which enables the film growth to be controlled also on the substrate surface. Selective-area ALD allows the decrease of a process steps in preparing thin film devices. This can be of a great technological importance when the ALD films become into wider use in different applications. Selective-area ALD can be achieved by passivation or activation of a surface. In this work ALD growth was prevented by octadecyltrimethoxysilane, octadecyltrichlorosilane and 1-dodecanethiol SAMs, and by PMMA (polymethyl methacrylate) and PVP (poly(vinyl pyrrolidone) polymer films. SAMs were prepared from vapor phase and by microcontact printing, and polymer films were spin coated. Microcontact printing created patterned SAMs at once. The SAMs prepared from vapor phase and the polymer mask layers were patterned by UV lithography or lift-off process so that after preparation of a continuous mask layer selected areas of them were removed. On these areas the ALD film was deposited selectively. SAMs and polymer films prevented the growth in several ALD processes such as iridium, ruthenium, platinum, TiO2 and polyimide so that the ALD films did grow only on areas without SAM or polymer mask layer. PMMA and PVP films also protected the surface against Al2O3 and ZrO2 growth. Activation of the surface for ALD of ruthenium was achieved by preparing a RuOX layer by microcontact printing. At low temperatures the RuCp2-O2 process nucleated only on this oxidative activation layer but not on bare silicon.