13 resultados para Fused salts

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1997 the Finnish Jabal Haroun Project (FJHP) has studied the ruins of the monastery and pilgrimage complex (Gr. oikos) of Aaron located on a plateau of the Mountain of Prophet Aaron, Jabal an-Nabi Harûn, ca. 5 km to the south-west of the UNESCO World Heritage site of Petra in Jordan. The state of conservation and the damaging processes affecting the stone structures of the site are studied in this M.A. thesis. The chapel was chosen as an example, as it represents the phasing and building materials of the entire site. The aim of this work is to act as a preliminary study with regards to the planning of long-term conservation at the site. The research is empirical in nature. The condition of the stones in the chapel walls was mapped using the Illustrated Glossary on Stone Deterioration, by the ICOMOS International Scientific Committee for Stone. This glossary combines several standards and systems of damage mapping used in the field. Climatic conditions (temperature and RH %) were monitored for one year (9/2005-8/2006) using a HOBO Microstation datalogger. The measurements were compared with contemporary measurements from the nearest weather station in Wadi Musa. Salts in the stones were studied by taking samples from the stone surfaces by scraping and with the “Paper Pulp”-method; with a poultice of wet cellulose fiber (Arbocel BC1000) and analyzing what main types of salts were to be found in the samples. The climatic conditions on the mountain were expected to be rapidly changing and to differ clearly from conditions in the neighboring areas. The rapid changes were confirmed, but the values did not differ as much as expected from those nearby: the 12 months monitored had average temperatures and were somewhat drier than average. Earlier research in the area has shown that the geological properties of the stone material influence its deterioration. The damage mapping showed clearly, that salts are also a major reason for stone weathering. The salt samples contained several salt combinations, whose behavior in the extremely unstable climatic conditions is difficult to predict. Detailed mapping and regular monitoring of especially the structures, that are going remain exposed, is recommended in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in both vertebrates and invertebrates have identified proteins of the Hedgehog (Hh) family of secreted signaling molecules as key organizers of tissue patterning. Initially discovered in Drosophila in 1992, Hh family members have been discovered in animals with body plans as diverse as those of mammals, insects and echinoderms. In humans three related Hh genes have been identified: Sonic, Indian and Desert hedgehog (Shh, Ihh and Dhh). Transduction of the Hh signal to the cytoplasm utilizes an unusual mechanism involving consecutive repressive interactions between Hh and its receptor components, Patched (Ptc) and Smoothened (Smo). Several cytoplasmic proteins involved in Hh signal transduction are known in Drosophila, but mammalian homologs are known only for the Cubitus interruptus (Ci) transcription factor (GLI(1-3)) and for the Ci/GLI-associated protein, Suppressor of Fused (Su(fu)). In this study I analyzed the mechanisms of how the Hh receptor Ptc regulates the signal transducer Smo, and how Smo relays the Shh signal from the cell surface to the cytoplasm ultimately leading to the activation of GLI transcription factors. In Drosophila, the kinesin-like protein Costal2 (Cos2) is required for suppression of Hh target gene expression in the absence of ligand, and loss of Cos2 causes embryonic lethality. Cos2 acts by bridging Smo to the Ci. Another protein, Su(Fu) exerts a weak suppressive influence on Ci activity and loss of Su(Fu) causes subtle changes in Drosophila wing pattern. This study revealed that domains in Smo that are critical for Cos2 binding in Drosophila are dispensable for mammalian Smo function. Furthermore, by analyzing the function of Su(Fu) and the closest mouse homologs of Cos2 by protein overexpression and RNA interference I found that inhibition of the Hh response pathway in the absence of ligand does not require Cos2 activity, but instead critically depends on the activity of Su(Fu). These results indicate that a major change in the mechanism of action of a conserved signaling pathway occurred during evolution, probably through phenotypic drift made possible by the existence in some species of two parallel pathways acting between the Hh receptor and the Ci/GLI transcription factors. In a second approach to unravel Hh signaling we cloned > 90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase-activity deficient mutants. Using this kinome resource as a screening tool, two kinases, MAP3K10 and DYRK2 were found to regulate Shh signaling. DYRK2 directly phosphorylated and induced the proteasome dependent degradation of the key Hh-pathway regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis describes the development of a miniaturized capillary electrochromatography (CEC) technique suitable for the study of interactions between various nanodomains of biological importance. The particular focus of the study was low-density lipoprotein (LDL) particles and their interaction with components of the extracellular matrix (ECM). LDL transports cholesterol to the tissues through the blood circulation, but when the LDL level becomes too high the particles begin to permeate and accumulate in the arteries. Through binding sites on apolipoprotein B-100 (apoB-100), LDL interacts with components of the ECM, such as proteoglycans (PGs) and collagen, in what is considered the key mechanism in the retention of lipoproteins and onset of atherosclerosis. Hydrolytic enzymes and oxidizing agents in the ECM may later successively degrade the LDL surface. Metabolic diseases such as diabetes may provoke damage of the ECM structure through the non-enzymatic reaction of glucose with collagen. In this work, fused silica capillaries of 50 micrometer i.d. were successfully coated with LDL and collagen, and steroids and apoB-100 peptide fragments were introduced as model compounds for interaction studies. The LDL coating was modified with copper sulphate or hydrolytic enzymes, and the interactions of steroids with the native and oxidized lipoproteins were studied. Lipids were also removed from the LDL particle coating leaving behind an apoB-100 surface for further studies. The development of collagen and collagen decorin coatings was helpful in the elucidation of the interactions of apoB-100 peptide fragments with the primary ECM component, collagen. Furthermore, the collagen I coating provided a good platform for glycation studies and for clarification of LDL interactions with native and modified collagen. All methods developed are inexpensive, requiring just small amounts of biomaterial. Moreover, the experimental conditions in CEC are easily modified, and the analyses can be carried out in a reasonable time frame. Other techniques were employed to support and complement the CEC studies. Scanning electron microscopy and atomic force microscopy provided crucial visual information about the native and modified coatings. Asymmetrical flow field-flow fractionation enabled size measurements of the modified lipoproteins. Finally, the CEC results were exploited to develop new sensor chips for a continuous flow quartz crystal microbalance technique, which provided complementary information about LDL ECM interactions. This thesis demonstrates the potential of CEC as a valuable and flexible technique for surface interaction studies. Further, CEC can serve as a novel microreactor for the in situ modification of LDL and collagen coatings. The coatings developed in this study provide useful platforms for a diversity of future investigations on biological nanodomains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of intermolecular interactions to chemistry, physics, and biology is difficult to overestimate. Without intermolecular forces, condensed phase matter could not form. The simplest way to categorize different types of intermolecular interactions is to describe them using van der Waals and hydrogen bonded (H-bonded) interactions. In the H-bond, the intermolecular interaction appears between a positively charged hydrogen atom and electronegative fragments and it originates from strong electrostatic interactions. H-bonding is important when considering the properties of condensed phase water and in many biological systems including the structure of DNA and proteins. Vibrational spectroscopy is a useful tool for studying complexes and the solvation of molecules. Vibrational frequency shift has been used to characterize complex formation. In an H-bonded system A∙∙∙H-X (A and X are acceptor and donor species, respectively), the vibrational frequency of the H-X stretching vibration usually decreases from its value in free H-X (red-shift). This frequency shift has been used as evidence for H-bond formation and the magnitude of the shift has been used as an indicator of the H-bonding strength. In contrast to this normal behavior are the blue-shifting H-bonds, in which the H-X vibrational frequency increases upon complex formation. In the last decade, there has been active discussion regarding these blue-shifting H-bonds. Noble-gases have been considered inert due to their limited reactivity with other elements. In the early 1930 s, Pauling predicted the stable noble-gas compounds XeF6 and KrF6. It was not until three decades later Neil Bartlett synthesized the first noble-gas compound, XePtF6, in 1962. A renaissance of noble-gas chemistry began in 1995 with the discovery of noble-gas hydride molecules at the University of Helsinki. The first hydrides were HXeCl, HXeBr, HXeI, HKrCl, and HXeH. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. At present, this class of molecules comprises 23 members including both inorganic and organic compounds. The first and only argon-containing neutral chemical compound HArF was synthesized in 2000 and its properties have since been investigated in a number of studies. A helium-containing chemical compound, HHeF, was predicted computationally, but its lifetime has been predicted to be severely limited by hydrogen tunneling. Helium and neon are the only elements in the periodic table that do not form neutral, ground state molecules. A noble-gas matrix is a useful medium in which to study unstable and reactive species including ions. A solvated proton forms a centrosymmetric NgHNg+ (Ng = Ar, Kr, and Xe) structure in a noble-gas matrix and this is probably the simplest example of a solvated proton. Interestingly, the hypothetical NeHNe+ cation is isoelectronic with the water-solvated proton H5O2+ (Zundel-ion). In addition to the NgHNg+ cations, the isoelectronic YHY- (Y = halogen atom or pseudohalogen fragment) anions have been studied with the matrix-isolation technique. These species have been known to exist in alkali metal salts (YHY)-M+ (M = alkali metal e.g. K or Na) for more than 80 years. Hydrated HF forms the FHF- structure in aqueous solutions, and these ions participate in several important chemical processes. In this thesis, studies of the intermolecular interactions of HNgY molecules and centrosymmetric ions with various species are presented. The HNgY complexes show unusual spectral features, e.g. large blue-shifts of the H-Ng stretching vibration upon complexation. It is suggested that the blue-shift is a normal effect for these molecules, and that originates from the enhanced (HNg)+Y- ion-pair character upon complexation. It is also found that the HNgY molecules are energetically stabilized in the complexed form, and this effect is computationally demonstrated for the HHeF molecule. The NgHNg+ and YHY- ions also show blue-shifts in their asymmetric stretching vibration upon complexation with nitrogen. Additionally, the matrix site structure and hindered rotation (libration) of the HNgY molecules were studied. The librational motion is a much-discussed solid state phenomenon, and the HNgY molecules embedded in noble-gas matrices are good model systems to study this effect. The formation mechanisms of the HNgY molecules and the decay mechanism of NgHNg+ cations are discussed. A new electron tunneling model for the decay of NgHNg+ absorptions in noble-gas matrices is proposed. Studies of the NgHNg+∙∙∙N2 complexes support this electron tunneling mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although immensely complex, speech is also a very efficient means of communication between humans. Understanding how we acquire the skills necessary for perceiving and producing speech remains an intriguing goal for research. However, while learning is likely to begin as soon as we start hearing speech, the tools for studying the language acquisition strategies in the earliest stages of development remain scarce. One prospective strategy is statistical learning. In order to investigate its role in language development, we designed a new research method. The method was tested in adults using magnetoencephalography (MEG) as a measure of cortical activity. Neonatal brain activity was measured with electroencephalography (EEG). Additionally, we developed a method for assessing the integration of seen and heard syllables in the developing brain as well as a method for assessing the role of visual speech when learning phoneme categories. The MEG study showed that adults learn statistical properties of speech during passive listening of syllables. The amplitude of the N400m component of the event-related magnetic fields (ERFs) reflected the location of syllables within pseudowords. The amplitude was also enhanced for syllables in a statistically unexpected position. The results suggest a role for the N400m component in statistical learning studies in adults. Using the same research design with sleeping newborn infants, the auditory event-related potentials (ERPs) measured with EEG reflected the location of syllables within pseudowords. The results were successfully replicated in another group of infants. The results show that even newborn infants have a powerful mechanism for automatic extraction of statistical characteristics from speech. We also found that 5-month-old infants integrate some auditory and visual syllables into a fused percept, whereas other syllable combinations are not fully integrated. Auditory syllables were paired with visual syllables possessing a different phonetic identity, and the ERPs for these artificial syllable combinations were compared with the ERPs for normal syllables. For congruent auditory-visual syllable combinations, the ERPs did not differ from those for normal syllables. However, for incongruent auditory-visual syllable combinations, we observed a mismatch response in the ERPs. The results show an early ability to perceive speech cross-modally. Finally, we exposed two groups of 6-month-old infants to artificially created auditory syllables located between two stereotypical English syllables in the formant space. The auditory syllables followed, equally for both groups, a unimodal statistical distribution, suggestive of a single phoneme category. The visual syllables combined with the auditory syllables, however, were different for the two groups, one group receiving visual stimuli suggestive of two separate phoneme categories, the other receiving visual stimuli suggestive of only one phoneme category. After a short exposure, we observed different learning outcomes for the two groups of infants. The results thus show that visual speech can influence learning of phoneme categories. Altogether, the results demonstrate that complex language learning skills exist from birth. They also suggest a role for the visual component of speech in the learning of phoneme categories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkimus käsittelee kääpien sukulaisuussuhteita. Käävät ovat kantasienten (Basidiomycota) muotoryhmä, joiden itiöemien alapinta muodostuu yhteensulautuneista pilleistä. Muotoryhmänä kääpiä voi verrata vaikka puihin siinä mielessä, että käävät kuten puutkaan eivät ole samankaltaisuudestaan huolimatta kaikki sukua toisilleen. DNA:n käyttö sukulaisuussuhteiden selvittämisessä on aloittanut mullistuksen kääpien luokittelussa. Aiemmin käytetty, itiöemien ominaisuuksiin perustunut luokittelu on osoittautunut keinotekoiseksi sukulaisuussuhteiden kannalta. Tutkimuksessani syvennyttiin useamman kääpäsuvun polveutumishistoriaan hyödyntäen DNA:ta ja perinteisiä menetelmiä. Tutkimuksen keskeisimmät tulokset liittyvät sitkokääpien sukuun (Antrodiella). Tämä noin 70 lajia sisältävä suku osoittautui rikkonaiseksi - sitkokääpiin luetut lajit kuuluvat kahteen sienilahkoon ja oikesti vähintään 13 sukuun. Tutkimuksessa löytyi kaksi Suomelle uutta sitkokääpää, leppikääpä (A. ichnusana) ja nipukkakääpä (A. leucoxantha). Uudet suvut kuvattiin Suomessa esiintyville sirppikääville (Sidera) ja talikääville (Obba). Uusi kääpäsuku ja -laji kuvattiin myös Indonesiasta (Sebipora aquosa). Valtaosa sitkokääpiin luetuista lajeista kuuluu orakarakoiden heimoon (Steccherinaceae), joka rajattiin tässä tutkimuksessa uudelleen. Heimoon kuuluvat mm. karakäävät (Junghuhnia) ja orakasmaiset orakarakat (Steccherinum). Sen sisällä selvitettiin kääpien ja orakkaiden sukulaisuussuhteita. Perinteisesti käävät ja orakkaat on viety eri sukuihin riippumatta niiden mikroskooppisesta samankaltaisuudesta. Tulosten valossa orakarakoiden heimossa käävät ja orakkaat pysyvät pääosin erillisissä suvuissa, mutta tästä on myös poikkeuksia (Antrodiella, Metuloidea ja Steccherinum). Lähes kaikki DNA:n perusteella määriteltävissä olevat suvut ovat tunnistettavissa itiöemien ominaisuuksiensa perusteella. Tulokset antavat eväitä kääpien luokitteluun laajemminkin osoittamalla, mitkä ominaisuudet ovat luokittelun kannalta merkityksellisiä. Tarkentunut tieto lajimäärästä ja lajien sukulaisuussuhteista hyödyttää ekologista tutkimusta sekä arvioita lajien uhanalaisuudesta. Tutkimuksen aikana luotua DNA-kirjastoa käytetään lajien tunnistamiseen. Tuloksia voidaan hyödyntää myös etsittäessä bioteknologisia sovelluksia käävistä, sillä sovellusten kannalta kiinnostavat ominaisuudet seuraavat usein sienten sukupuuta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.