28 resultados para Formulation in pressures and displacements
em Helda - Digital Repository of University of Helsinki
Resumo:
This paper argues that workplace bullying can in some cases be a form of organisational politics, that is, a deliberate, competitive strategy from the perspective of the individual perpetrator. A cross-sectional study conducted among business professionals revealed that there was a correlation between a politicised and competitive climate and bullying. This finding implies that globalisation, increased pressures for efficiency, and restructuring, which limits the number of management positions and thereby contributes to increased internal competition, may lead to more bullying. The findings have important implications for management, since the possible political aspects of bullying must be taken into account in order to be able to undertake successful prevention and intervention measures.
Resumo:
In this study I look at what people want to express when they talk about time in Russian and Finnish, and why they use the means they use. The material consists of expressions of time: 1087 from Russian and 1141 from Finnish. They have been collected from dictionaries, usage guides, corpora, and the Internet. An expression means here an idiomatic set of words in a preset form, a collocation or construction. They are studied as lexical entities, without a context, and analysed and categorized according to various features. The theoretical background for the study includes two completely different approaches. Functional Syntax is used in order to find out what general meanings the speaker wishes to convey when talking about time and how these meanings are expressed in specific languages. Conceptual metaphor theory is used for explaining why the expressions are as they are, i.e. what kind of conceptual metaphors (transfers from one conceptual domain to another) they include. The study has resulted in a grammatically glossed list of time expressions in Russian and Finnish, a list of 56 general meanings involved in these time expressions and an account of the means (constructions) that these languages have for expressing the general meanings defined. It also includes an analysis of conceptual metaphors behind the expressions. The general meanings involved turned out to revolve around expressing duration, point in time, period of time, frequency, sequence, passing of time, suitable time and the right time, life as time, limitedness of time, and some other notions having less obvious semantic relations to the others. Conceptual metaphor analysis of the material has shown that time is conceptualized in Russian and Finnish according to the metaphors Time Is Space (Time Is Container, Time Has Direction, Time Is Cycle, and the Time Line Metaphor), Time Is Resource (and its submapping Time Is Substance), Time Is Actor; and some characteristics are added to these conceptualizations with the help of the secondary metaphors Time Is Nature and Time Is Life. The limits between different conceptual metaphors and the connections these metaphors have with one another are looked at with the help of the theory of conceptual integration (the blending theory) and its schemas. The results of the study show that although Russian and Finnish are typologically different, they are very similar both in the needs of expression their speakers have concerning time, and in the conceptualizations behind expressing time. This study introduces both theoretical and methodological novelties in the nature of material used, in developing empirical methodology for conceptual metaphor studies, in the exactness of defining the limits of different conceptual metaphors, and in seeking unity among the different facets of time. Keywords: time, metaphor, time expression, idiom, conceptual metaphor theory, functional syntax, blending theory
Resumo:
The attempt to refer meaningful reality as a whole to a unifying ultimate principle - the quest for the unity of Being - was one of the basic tendencies of Western philosophy from its beginnings in ancient Greece up to Hegel's absolute idealism. However, the different trends of contemporary philosophy tend to regard such a speculative metaphysical quest for unity as obsolete. This study addresses this contemporary situation on the basis of the work of Martin Heidegger (1889-1976). Its methodological framework is Heidegger's phenomenological and hermeneutical approach to the history of philosophy. It seeks to understand, in terms of the metaphysical quest for unity, Heidegger's contrast between the first (Greek) beginning or "onset" (Anfang) of philosophy and another onset of thinking. This other onset is a possibility inherent in the contemporary situation in which, according to Heidegger, the metaphysical tradition has developed to its utmost limits and thereby come to an end. Part I is a detailed interpretation of the surviving fragments of the Poem of Parmenides of Elea (fl. c. 500 BC), an outstanding representative of the first philosophical beginning in Heidegger's sense. It is argued that the Poem is not a simple denial of apparent plurality and difference ("mortal acceptances," doxai) in favor of an extreme monism. Parmenides' point is rather to show in what sense the different instances of Being can be reduced to an absolute level of truth or evidence (aletheia), which is the unity of Being as such (to eon). What in prephilosophical human experience is accepted as being is referred to the source of its acceptability: intelligibility as such, the simple and undifferentiated presence to thinking that ultimately excludes unpresence and otherness. Part II interprets selected key texts from different stages in Heidegger's thinking in terms of the unity of Being. It argues that one aspect of Heidegger's sustained and gradually deepening philosophical quest was to think the unity of Being as singularity, as the instantaneous, context-specific, and differential unity of a temporally meaningful situation. In Being and Time (1927) Heidegger articulates the temporal situatedness of the human awareness of meaningful presence. His later work moves on to study the situational correlation between presence and the human awareness. Heidegger's "postmetaphysical" articulation seeks to show how presence becomes meaningful precisely as situated, in an event of differentiation from a multidimensional context of unpresence. In resigning itself to this irreducibly complicated and singular character of meaningful presence, philosophy also faces its own historically situated finitude. This resignation is an essential feature of Heidegger's "other onset" of thinking.
Resumo:
Comprehension of a complex acoustic signal - speech - is vital for human communication, with numerous brain processes required to convert the acoustics into an intelligible message. In four studies in the present thesis, cortical correlates for different stages of speech processing in a mature linguistic system of adults were investigated. In two further studies, developmental aspects of cortical specialisation and its plasticity in adults were examined. In the present studies, electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings of the mismatch negativity (MMN) response elicited by changes in repetitive unattended auditory events and the phonological mismatch negativity (PMN) response elicited by unexpected speech sounds in attended speech inputs served as the main indicators of cortical processes. Changes in speech sounds elicited the MMNm, the magnetic equivalent of the electric MMN, that differed in generator loci and strength from those elicited by comparable changes in non-speech sounds, suggesting intra- and interhemispheric specialisation in the processing of speech and non-speech sounds at an early automatic processing level. This neuronal specialisation for the mother tongue was also reflected in the more efficient formation of stimulus representations in auditory sensory memory for typical native-language speech sounds compared with those formed for unfamiliar, non-prototype speech sounds and simple tones. Further, adding a speech or non-speech sound context to syllable changes was found to modulate the MMNm strength differently in the left and right hemispheres. Following the acoustic-phonetic processing of speech input, phonological effort related to the selection of possible lexical (word) candidates was linked with distinct left-hemisphere neuronal populations. In summary, the results suggest functional specialisation in the neuronal substrates underlying different levels of speech processing. Subsequently, plasticity of the brain's mature linguistic system was investigated in adults, in whom representations for an aurally-mediated communication system, Morse code, were found to develop within the same hemisphere where representations for the native-language speech sounds were already located. Finally, recording and localization of the MMNm response to changes in speech sounds was successfully accomplished in newborn infants, encouraging future MEG investigations on, for example, the state of neuronal specialisation at birth.
Resumo:
Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.
Resumo:
Autism and Asperger syndrome (AS) are neurodevelopmental disorders characterised by deficient social and communication skills, as well as restricted, repetitive patterns of behaviour. The language development in individuals with autism is significantly delayed and deficient, whereas in individuals with AS, the structural aspects of language develop quite normally. Both groups, however, have semantic-pragmatic language deficits. The present thesis investigated auditory processing in individuals with autism and AS. In particular, the discrimination of and orienting to speech and non-speech sounds was studied, as well as the abstraction of invariant sound features from speech-sound input. Altogether five studies were conducted with auditory event-related brain potentials (ERP); two studies also included a behavioural sound-identification task. In three studies, the subjects were children with autism, in one study children with AS, and in one study adults with AS. In children with autism, even the early stages of sound encoding were deficient. In addition, these children had altered sound-discrimination processes characterised by enhanced spectral but deficient temporal discrimination. The enhanced pitch discrimination may partly explain the auditory hypersensitivity common in autism, and it may compromise the filtering of relevant auditory information from irrelevant information. Indeed, it was found that when sound discrimination required abstracting invariant features from varying input, children with autism maintained their superiority in pitch processing, but lost it in vowel processing. Finally, involuntary orienting to sound changes was deficient in children with autism in particular with respect to speech sounds. This finding is in agreement with previous studies on autism suggesting deficits in orienting to socially relevant stimuli. In contrast to children with autism, the early stages of sound encoding were fairly unimpaired in children with AS. However, sound discrimination and orienting were rather similarly altered in these children as in those with autism, suggesting correspondences in the auditory phenotype in these two disorders which belong to the same continuum. Unlike children with AS, adults with AS showed enhanced processing of duration changes, suggesting developmental changes in auditory processing in this disorder.
Resumo:
The synchronization of neuronal activity, especially in the beta- (14-30 Hz) /gamma- (30 80 Hz) frequency bands, is thought to provide a means for the integration of anatomically distributed processing and for the formation of transient neuronal assemblies. Thus non-stimulus locked (i.e. induced) gamma-band oscillations are believed to underlie feature binding and the formation of neuronal object representations. On the other hand, the functional roles of neuronal oscillations in slower theta- (4 8 Hz) and alpha- (8 14 Hz) frequency bands remain controversial. In addition, early stimulus-locked activity has been largely ignored, as it is believed to reflect merely the physical properties of sensory stimuli. With human neuromagnetic recordings, both the functional roles of gamma- and alpha-band oscillations and the significance of early stimulus-locked activity in neuronal processing were examined in this thesis. Study I of this thesis shows that even the stimulus-locked (evoked) gamma oscillations were sensitive to high-level stimulus features for speech and non-speech sounds, suggesting that they may underlie the formation of early neuronal object representations for stimuli with a behavioural relevance. Study II shows that neuronal processing for consciously perceived and unperceived stimuli differed as early as 30 ms after stimulus onset. This study also showed that the alpha band oscillations selectively correlated with conscious perception. Study III, in turn, shows that prestimulus alpha-band oscillations influence the subsequent detection and processing of sensory stimuli. Further, in Study IV, we asked whether phase synchronization between distinct frequency bands is present in cortical circuits. This study revealed prominent task-sensitive phase synchrony between alpha and beta/gamma oscillations. Finally, the implications of Studies II, III, and IV to the broader scientific context are analysed in the last study of this thesis (V). I suggest, in this thesis that neuronal processing may be extremely fast and that the evoked response is important for cognitive processes. I also propose that alpha oscillations define the global neuronal workspace of perception, action, and consciousness and, further, that cross-frequency synchronization is required for the integration of neuronal object representations into global neuronal workspace.
Resumo:
Alzheimer's disease (AD) is characterized by an impairment of the semantic memory responsible for processing meaning-related knowledge. This study was aimed at examining how Finnish-speaking healthy elderly subjects (n = 30) and mildly (n=20) and moderately (n = 20) demented AD patients utilize semantic knowledge to performa semantic fluency task, a method of studying semantic memory. In this task subjects are typically given 60 seconds to generate words belonging to the semantic category of animals. Successful task performance requires fast retrieval of subcategory exemplars in clusters (e.g., farm animals: 'cow', 'horse', 'sheep') and switching between subcategories (e.g., pets, water animals, birds, rodents). In this study, thescope of the task was extended to cover various noun and verb categories. The results indicated that, compared with normal controls, both mildly and moderately demented AD patients showed reduced word production, limited clustering and switching, narrowed semantic space, and an increase in errors, particularly perseverations. However, the size of the clusters, the proportion of clustered words, and the frequency and prototypicality of words remained relatively similar across the subject groups. Although the moderately demented patients showed a poor eroverall performance than the mildly demented patients in the individual categories, the error analysis appeared unaffected by the severity of AD. The results indicate a semantically rather coherent performance but less specific, effective, and flexible functioning of the semantic memory in mild and moderate AD patients. The findings are discussed in relation to recent theories of word production and semantic representation. Keywords: semantic fluency, clustering, switching, semantic category, nouns, verbs, Alzheimer's disease
Resumo:
Goals This study aims to map the effect of interrogative function on the intonation of spontaneous and read Finnish. Earlier research shows that the most prominent feature in Finnish question intonation is an appeal to the listener. Question word questions typically start with a high peak which is followed by falling intonation. In yes/no questions, F0 remains on a high level until the word carrying sentence stress and then falls. Final rises are mainly found in intonation clichés such as "Ai mitä?" ("What?") These earlier results are based on read speech and enacted dialogues. In this study, questions and statements found in spontaneous dialogues were compared. These utterances were also compared with read versions of the same utterances. Fundamental frequency values were compared using a mixed model. Contours were also grouped using auditory and visual inspection. Thus it was possible to compare frequencies of contour types according to utterance type and speech style. The position of questions in the F0 distribution of the whole material was also investigated in this study. Method The material consisted of four spontaneous dialogues and their read versions. The speakers were young adults from the Helsinki metropolitan area, four females and four males. The whole material was first divided into broad dialogue function categories arising from the material and F0 curves were calculated for each category. After this, 277 questions and 244 statements were selected for closer inspection. Values reflecting F0 distribution and contour shape were measured from the F0 contours of these utterances. A mixed model was used to analyse the differences. Utterance type, question type, speech style and speaker gender were used as fixed effects. The frequencies of F0 contour types were compared using a Chi square test. Additional material in this study came from eight young female speakers in central Finland. Results and conclusions In the mixed model analysis, significant differences were found both between questions and statements and between spontaneous and read speech. Generally, utterance type affected the variables reflecting contour type while speech style affected the variables reflecting F0 distribution. The effect of question type was not clearly visible. In read speech the contours resembled earlier results more closely. Speakers had different strategies in differentiating between questions and statements. In the whole material, F0 was slightly higher in questions than in statements. The effect of dialectal background could be seen in the contour types. The results show that interrogative function affects intonation in both spontaneous and read Finnish.
Resumo:
Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.
Resumo:
Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.