7 resultados para Fat.

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Obesity is closely associated with insulin resistance, which is a pathophysiologic condition contributing to the important co-morbidities of obesity, such as the metabolic syndrome and type 2 diabetes mellitus. In obese subjects, adipose tissue is characterized by inflammation (macrophage infiltration, increased expression insulin resistance genes and decreased expression of insulin sensitivity genes). Increased liver fat, without excessive alcohol consumption, is defined as non-alcoholic fatty liver disease (NAFLD) and also associated with obesity and insulin resistance. It is unknown whether and how insulin resistance is associated with altered expression of adipocytokines (adipose tissue-derived signaling molecules), and whether adipose tissue inflammation and NAFLD coexist independent of obesity. Genetic factors could explain variation in liver fat independent of obesity but the heritability of NAFLD is unknown. AIMS: To determine whether acute regulation of adipocytokine expression by insulin in adipose tissue is altered in obesity. To investigate the relationship between adipose tissue inflammation and liver fat content independent of obesity. To assess the heritability of serum alanine aminotransferase (ALT) activity, a surrogate marker of liver fat. METHODS: 55 healthy normal-weight and obese volunteers were recruited. Subcutaneous adipose tissue biopsies were obtained for measurement of gene expression before and during 6 hours of euglycemic hyperinsulinemia. Liver fat content was measured by proton magnetic resonance spectroscopy, and adipose tissue inflammation was assessed by gene expression, immunohistochemistry and lipidomics analysis. Genetic factors contributing to serum ALT activity were determined in 313 twins by statistical heritability modeling. RESULTS: During insulin infusion the expression of insulin sensitivity genes remains unchanged, while the expression of insulin resistance genes increases in obese/insulin-resistant subjects compared to insulin-sensitive subjects. Adipose tissue inflammation is associated with liver fat content independent of obesity. Adipose tissue of subjects with high liver fat content is characterized infiltrated macrophages and increased expression of inflammatory genes, as well as by increased concentrations of ceramides compared to equally obese subjects with normal liver fat. A significant heritability for serum ALT activity was verified. CONCLUSIONS: Effects of insulin infusion on adipose tissue gene expression in obese/insulin-resistant subjects are not only characterized by hyporesponse of insulin sensitivity genes but also by hyperresponse of insulin resistance and inflammatory genes. This suggests that in obesity, the impaired insulin action contributes or self-perpetuates alterations in adipocytokine expression in adipose tissue. Adipose tissue inflammation is increased in subjects with high liver fat compared to equally obese subjects with normal liver fat content. Concentrations of ceramides, the putative mediators of insulin resistance, are increased in adipose tissue in subjects with high liver fat. Genetic factors contribute significantly to variation in serum ALT activity, a surrogate marker of liver fat. These data imply that adipose tissue inflammation and increased liver fat content are closely interrelated, and determine insulin resistance even independent of obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we re-examine the relationship between overweight and labour market success, using indicators of individual body composition along with BMI (Body Mass Index). We use the dataset from Finland in which weight, height, fat mass and waist circumference are not self-reported, but obtained as part of the overall health examination. We find that waist circumference, but not weight or fat mass, has a negative effect on wages for women, whereas all measures of obesity have negative effects on women’s employment probabilities. For men, the only obesity measure that is significant for men’s employment probabilities is fat mass. One interpretation of our findings is that the negative wage effects of overweight on wages run through the discrimination channel, but that the negative effects of overweight on employment have more to do with ill health. All in all, measures of body composition provide a more refined picture about the effects of obesity on wages and employment.