13 resultados para Faisceau occipito-frontal (FOF)

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cigarette smoking is, in developed countries, the leading cause of premature death. In tobacco smoke, the main addictive compound is nicotine, which in the brain binds to neuronal nicotinic acetylcholine receptors (neuronal nAChRs). These have been implicated in addiction, but also in several neurological disorders including Alzheimer's and Parkinson's diseases, Tourette's syndrome, attention-deficit hyperactivity disorder (ADHD), schizophrenia, pain, depression, and autosomal-dominant noctural frontal lobe epilepsy; all of which makes nAChRs an intriguing target of study. Chronic treatment with nicotine leads to an increase in the number of nAChRs (upregulation) in the brain and changes their functionality. Changes in the properties of nAChRs are likely to occur in smokers as well, since they are exposed to nicotine for long periods of time. Several nAChR subtypes likely play a role in the formation of nicotine addiction by participating in the release of dopamine in the striatum. The aim of this study was to clarify at cellular level the changes in nAChR characteristics resulting from chronic nicotine treatment. SH-SY5Y cells, endogenously several nAChR-expressing, and SH-EP1-h-alfa7 cells, transfected with the alfa 7 nAChR subunit gene were treated chronically with nicotine. The localisation of alfa 7 and beta2 subunits was studied with confocal and electron microscopy. Functionality of nAChRs was studied with calcium fluorometry. Effects of long-term treatment with opioid compounds on nAChRs were studied by means of ligand binding. Confocal microscopy showed that in SH-SY5Y cells, alfa7 and beta2 subunits formed clusters, unlike the case in SH-EP1-h alfa7 cells, where alfa7 nAChRs were distributed more diffusely. The majority of nAChR subunits localised on endoplasmic reticulum (ER). The isomers of methadone acted as agonists at alfa7 nAChRs. Acute morphine challenge also stimulated nAChRs. Chronic treatment with methadone or morphine led to an increased number of nAChRs. In animal studies, mice received nicotine for 7 weeks. Electron microscopical analysis of the localisation of nAChRs showed in the striatum that alfa7 and beta2 nAChR subunits localised synaptically, extrasynaptically, and intracellularly, with the majority localising extrasynaptically. Chronic nicotine treatment caused an increase in the number of nAChR subunits at all studied locations. These results suggest that the alfa7 nAChR and beta2 subunit-containing nAChRs respond to chronic nicotine treatment differently. This may indicate that the functional balance of various nAChR subtypes in control of the release of dopamine is altered as a result of chronic nicotine treatment. Compounds binding both to opioid and nACh receptors may be of clinical importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of vascular cognitive impairment (VCI) covers a wide spectrum of cognitive dysfunctions related to cerebrovascular disease. Among the pathophysiological determinants of VCI are cerebral stroke, white matter lesions and brain atrophy, which are known to be important risk factors for dementia. However, the specific mechanisms behind the brain abnormalities and cognitive decline are still poorly understood. The present study investigated the neuropsychological correlates of particular magnetic resonance imaging (MRI) findings, namely, medial temporal lobe atrophy (MTA), white matter hyperintensities (WMH), general cortical atrophy and corpus callosum (CC) atrophy in subjects with cerebrovascular disease. Furthermore, the cognitive profile of subcortical ischaemic vascular disease (SIVD) was examined. This study was conducted as part of two large multidisciplinary study projects, the Helsinki Stroke Aging Memory (SAM) Study and the multinational Leukoaraiosis and Disability (LADIS) Study. The SAM cohort consisted of 486 patients, between 55 and 85 years old, with ischaemic stroke from the Helsinki University Hospital, Helsinki, Finland. The LADIS Study included a mixed sample of subjects (n=639) with age-related WMH, between 65 and 84 years old, gathered from 11 centres around Europe. Both studies included comprehensive clinical and neuropsychological assessments and detailed brain MRI. The relationships between the MRI findings and the neuropsychological test performance were analysed by controlling for relevant confounding factors such as age, education and other coexisting brain lesions. The results revealed that in elderly patients with ischaemic stroke, moderate to severe MTA was specifically related to impairment of memory and visuospatial functions, but mild MTA had no clinical relevance. Instead, WMH were primarily associated with executive deficits and mental slowing. These deficits mediated the relationship between WMH and other, secondary cognitive deficits. Cognitive decline was best predicted by the overall degree of WMH, whereas the independent contribution of regional WMH measures was low. Executive deficits were the most prominent cognitive characteristic in SIVD. Compared to other stroke patients, the patients with SIVD also presented more severe memory deficits, which were related to MTA. The cognitive decline in SIVD occurred independently of depressive symptoms and, relative to healthy control subjects, it was substantial in severity. In stroke patients, general cortical atrophy also turned out to be a strong predictor of cognitive decline in a wide range of cognitive domains. Moreover, in elderly subjects with WMH, overall CC atrophy was related to reduction in mental speed, while anterior CC atrophy was independently associated with frontal lobe-mediated executive functions and attention. The present study provides cross-sectional evidence for the involvement of WMH, MTA, general cortical atrophy and CC atrophy in VCI. The results suggest that there are multifaceted pathophysiological mechanisms behind VCI in the elderly, including both vascular ischaemic lesions and neurodegenerative changes. The different pathological changes are highly interrelated processes and together they may produce cumulative effects on cognitive decline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective attention refers to the process in which certain information is actively selected for conscious processing, while other information is ignored. The aim of the present studies was to investigate the human brain mechanisms of auditory and audiovisual selective attention with functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). The main focus was on attention-related processing in the auditory cortex. It was found that selective attention to sounds strongly enhances auditory cortex activity associated with processing the sounds. In addition, the amplitude of this attention-related modulation was shown to increase with the presentation rate of attended sounds. Attention to the pitch of sounds and to their location appeared to enhance activity in overlapping auditory-cortex regions. However, attention to location produced stronger activity than attention to pitch in the temporo-parietal junction and frontal cortical regions. In addition, a study on bimodal attentional selection found stronger audiovisual than auditory or visual attention-related modulations in the auditory cortex. These results were discussed in light of Näätänen s attentional-trace theory and other research concerning the brain mechanisms of selective attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines brain networks involved in auditory attention and auditory working memory using measures of task performance, brain activity, and neuroanatomical connectivity. Auditory orienting and maintenance of attention were compared with visual orienting and maintenance of attention, and top-down controlled attention was compared to bottom-up triggered attention in audition. Moreover, the effects of cognitive load on performance and brain activity were studied using an auditory working memory task. Corbetta and Shulman s (2002) model of visual attention suggests that what is known as the dorsal attention system (intraparietal sulcus/superior parietal lobule, IPS/SPL and frontal eye field, FEF) is involved in the control of top-down controlled attention, whereas what is known as the ventral attention system (temporo-parietal junction, TPJ and areas of the inferior/middle frontal gyrus, IFG/MFG) is involved in bottom-up triggered attention. The present results show that top-down controlled auditory attention also activates IPS/SPL and FEF. Furthermore, in audition, TPJ and IFG/MFG were activated not only by bottom-up triggered attention, but also by top-down controlled attention. In addition, the posterior cerebellum and thalamus were activated by top-down controlled attention shifts and the ventromedial prefrontal cortex (VMPFC) was activated by to-be-ignored, but attention-catching salient changes in auditory input streams. VMPFC may be involved in the evaluation of environmental events causing the bottom-up triggered engagement of attention. Auditory working memory activated a brain network that largely overlapped with the one activated by top-down controlled attention. The present results also provide further evidence of the role of the cerebellum in cognitive processing: During auditory working memory tasks, both activity in the posterior cerebellum (the crus I/II) and reaction speed increased when the cognitive load increased. Based on the present results and earlier theories on the role of the cerebellum in cognitive processing, the function of the posterior cerebellum in cognitive tasks may be related to the optimization of response speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intact function of working memory (WM) is essential for children and adults to cope with every day life. Children with deficits in WM mechanisms have learning difficulties that are often accompanied by behavioral problems. The neural processes subserving WM, and brain structures underlying this system, continue to develop during childhood till adolescence and young adulthood. With functional magnetic resonance imaging (fMRI) it is possible to investigate the organization and development of WM. The present thesis aimed to investigate, using behavioral and neuroimaging methods, whether mnemonic processing of spatial and nonspatial visual information is segregated in the developing and mature human brain. A further aim in this research was to investigate the organization and development of audiospatial and visuospatial information processing in WM. The behavioral results showed that spatial and nonspatial visual WM processing is segregated in the adult brain. The fMRI result in children suggested that memory load related processing of spatial and nonspatial visual information engages common cortical networks, whereas selective attention to either type of stimuli recruits partially segregated areas in the frontal, parietal and occipital cortices. Deactivation mechanisms that are important in the performance of WM tasks in adults are already operational in healthy school-aged children. Electrophysiological evidence suggested segregated mnemonic processing of visual and auditory location information. The results of the development of audiospatial and visuospatial WM demonstrate that WM performance improves with age, suggesting functional maturation of underlying cognitive processes and brain areas. The development of the performance of spatial WM tasks follows a different time course in boys and girls indicating a larger degree of immaturity in the male than female WM systems. Furthermore, the differences in mastering auditory and visual WM tasks may indicate that visual WM reaches functional maturity earlier than the corresponding auditory system. Spatial WM deficits may underlie some learning difficulties and behavioral problems related to impulsivity, difficulties in concentration, and hyperactivity. Alternatively, anxiety or depressive symptoms may affect WM function and the ability to concentrate, being thus the primary cause of poor academic achievement in children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several hypnosis monitoring systems based on the processed electroencephalogram (EEG) have been developed for use during general anesthesia. The assessment of the analgesic component (antinociception) of general anesthesia is an emerging field of research. This study investigated the interaction of hypnosis and antinociception, the association of several physiological variables with the degree of intraoperative nociception, and aspects of EEG Bispectral Index Scale (BIS) monitoring during general anesthesia. In addition, EEG features and heart rate (HR) responses during desflurane and sevoflurane anesthesia were compared. A propofol bolus of 0.7 mg/kg was more effective than an alfentanil bolus of 0.5 mg in preventing the recurrence of movement responses during uterine dilatation and curettage (D C) after a propofol-alfentanil induction, combined with nitrous oxide (N2O). HR and several HR variability-, frontal electromyography (fEMG)-, pulse plethysmography (PPG)-, and EEG-derived variables were associated with surgery-induced movement responses. Movers were discriminated from non-movers mostly by the post-stimulus values per se or normalized with respect to the pre-stimulus values. In logistic regression analysis, the best classification performance was achieved with the combination of normalized fEMG power and HR during D C (overall accuracy 81%, sensitivity 53%, specificity 95%), and with the combination of normalized fEMG-related response entropy, electrocardiography (ECG) R-to-R interval (RRI), and PPG dicrotic notch amplitude during sevoflurane anesthesia (overall accuracy 96%, sensitivity 90%, specificity 100%). ECG electrode impedances after alcohol swab skin pretreatment alone were higher than impedances of designated EEG electrodes. The BIS values registered with ECG electrodes were higher than those registered simultaneously with EEG electrodes. No significant difference in the time to home-readiness after isoflurane-N2O or sevoflurane-N2O anesthesia was found, when the administration of the volatile agent was guided by BIS monitoring. All other early and intermediate recovery parameters were also similar. Transient epileptiform EEG activity was detected in eight of 15 sevoflurane patients during a rapid increase in the inspired volatile concentration, and in none of the 16 desflurane patients. The observed transient EEG changes did not adversely affect the recovery of the patients. Following the rapid increase in the inhaled desflurane concentration, HR increased transiently, reaching its maximum in two minutes. In the sevoflurane group, the increase was slower and more subtle. In conclusion, desflurane may be a safer volatile agent than sevoflurane in patients with a lowered seizure threshold. The tachycardia induced by a rapid increase in the inspired desflurane concentration may present a risk for patients with heart disease. Designated EEG electrodes may be superior to ECG electrodes in EEG BIS monitoring. When the administration of isoflurane or sevoflurane is adjusted to maintain BIS values at 50-60 in healthy ambulatory surgery patients, the speed and quality of recovery are similar after both isoflurane-N2O and sevoflurane-N2O anesthesia. When anesthesia is maintained by the inhalation of N2O and bolus doses of propofol and alfentanil in healthy unparalyzed patients, movement responses may be best avoided by ensuring a relatively deep hypnotic level with propofol. HR/RRI, fEMG, and PPG dicrotic notch amplitude are potential indicators of nociception during anesthesia, but their performance needs to be validated in future studies. Combining information from different sources may improve the discrimination of the level of nociception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Aims of the study were: (i) to characterise the clinical picture, immunological features and changes in brain morphology and function in patients with widespread unilateral pain and HSV-infections, and (ii) to analyse the prevalence, clinical symptoms and immunological predisposing factors of HSV-2 induced recurrent lymphocytic meningitis (RLM) in Southern Finland. Patients and methods: Patients for the studies were recruited from the Pain Clinic, and from the Department of Neurology, at Helsinki University Central Hospital. Plasma concentrations of IgM, IgA, IgG, and IgG1-4, and serum concentrations of C3, C4 were measured. Serological anti-HSV-1 and -2 antibody status was tested. C4 genotyping, HLA-A, HLA-B and HLA-DRB1 typing, MBL2 genotyping, and IgG1 and IgG3 allotyping (Gm) were performed. Clinical neurological examination, quantitative sensory testing, skin biopsy, and functional magnetic resonance imaging were also performed. Results: HSV probably has a role in the generation of a pathological pain state. Low serum IgG1 and IgG3 levels, made the patients vulnerable for recurring HSV infections. Both functional and structural changes were observed in the brain pain-processing areas in the patients: they had less pain-related activity in the insular cortices bilaterally, in the anterior cingular cortex (ACC), and in the thalamus, and the gray matter density was lower in the ACC, in the frontal and prefrontal cortices. In the meningitis studies it was shown that RLM is more common and less benign than previously reported, and that neuropathic pain is frequently present both during and after meningitis episodes. HLA-DRB1*01, HLA-B*27, and low IgG1 levels are predisposing factors for RLM. Conclusions: Patients are vulnerable to recurrent HSV infections because of subtle immunological abnormalities. HSV causes diverse clinical manifestations. First, the herpes simplex virus, or the inflammatory process triggered by it, may cause pathological widespread pain probably by activating glial cells in the CNS. In these patients, signs of alterations in the brain pain-processing areas can be demonstrated by functional brain imaging methods. Secondly, HSV-2 induced RLM is a rare complication of HSV-2 virus. The predisposing factors include low IgG1 subclass levels, HLA-DRB1*01 and HLA –B*27 genotypes. Neuropathic pain is frequently associated with RLM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Listening to music involves a widely distributed bilateral network of brain regions that controls many auditory perceptual, cognitive, emotional, and motor functions. Exposure to music can also temporarily improve mood, reduce stress, and enhance cognitive performance as well as promote neural plasticity. However, very little is currently known about the relationship between music perception and auditory and cognitive processes or about the potential therapeutic effects of listening to music after neural damage. This thesis explores the interplay of auditory, cognitive, and emotional factors related to music processing after a middle cerebral artery (MCA) stroke. In the acute recovery phase, 60 MCA stroke patients were randomly assigned to a music listening group, an audio book listening group, or a control group. All patients underwent neuropsychological assessments, magnetoencephalography (MEG) measurements, and magnetic resonance imaging (MRI) scans repeatedly during a six-month post-stroke period. The results revealed that amusia, a deficit of music perception, is a common and persistent deficit after a stroke, especially if the stroke affects the frontal and temporal brain areas in the right hemisphere. Amusia is clearly associated with deficits in both auditory encoding, as indicated by the magnetic mismatch negativity (MMNm) response, and domain-general cognitive processes, such as attention, working memory, and executive functions. Furthermore, both music and audio book listening increased the MMNm, whereas only music listening improved the recovery of verbal memory and focused attention as well as prevented a depressed and confused mood during the first post-stroke months. These findings indicate a close link between musical, auditory, and cognitive processes in the brain. Importantly, they also encourage the use of listening to music as a rehabilitative leisure activity after a stroke and suggest that the auditory environment can induce long-term plastic changes in the recovering brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of occupational chronic solvent encephalopathy (CSE) seems to decrease, but still every year reveals new cases. To prevent CSE and early retirement of solvent-exposed workers, actions should focus on early CSE detection and diagnosis. Identifying the work tasks and solvent exposure associated with high risk for CSE is crucial. Clinical and exposure data of all the 128 cases diagnosed with CSE as an occupational disease in Finland during 1995-2007 was collected from the patient records at the Finnish Institute of Occupational Health (FIOH) in Helsinki. The data on the number of exposed workers in Finland were gathered from the Finnish Job-exposure Matrix (FINJEM) and the number of employed from the national workforce survey. We analyzed the work tasks and solvent exposure of CSE patients and the findings in brain magnetic resonance imaging (MRI), quantitative electroencephalography (QEEG), and event-related potentials (ERP). The annual number of new cases diminished from 18 to 3, and the incidence of CSE decreased from 8.6 to 1.2 / million employed per year. The highest incidence of CSE was in workers with their main exposure to aromatic hydrocarbons; during 1995-2006 the incidence decreased from 1.2 to 0.3 / 1 000 exposed workers per year. The work tasks with the highest incidence of CSE were floor layers and lacquerers, wooden surface finishers, and industrial, metal, or car painters. Among 71 CSE patients, brain MRI revealed atrophy or white matter hyperintensities or both in 38% of the cases. Atrophy which was associated with duration of exposure was most frequently located in the cerebellum and in the frontal or parietal brain areas. QEEG in a group of 47 patients revealed increased power of the theta band in the frontal brain area. In a group of 86 patients, the P300 amplitude of auditory ERP was decreased, but at individual level, all the amplitude values were classified as normal. In 11 CSE patients and 13 age-matched controls, ERP elicited by a multimodal paradigm including an auditory, a visual detection, and a recognition memory task under single and dual-task conditions corroborated the decrease of auditory P300 amplitude in CSE patients in single-task condition. In dual-task conditions, the auditory P300 component was, more often in patients than in controls, unrecognizable. Due to the paucity and non-specificity of the findings, brain MRI serves mainly for differential diagnostics in CSE. QEEG and auditory P300 are insensitive at individual level and not useful in the clinical diagnostics of CSE. A multimodal ERP paradigm may, however, provide a more sensitive method to diagnose slight cognitive disturbances such as CSE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prefrontal cortex (PFC), located in the anterior region of the frontal lobe, is considered to have several key roles in higher cognitive and executive functions. In general, the PFC can be seen as a coordinator of thought and action allowing subjects to behave in a goal-directed manner. Due to its anatomical connections with a variety of cortical and subcortical structures, several neurotransmitters, including dopamine, are involved in the regulation of PFC activity. In general, the majority of released dopamine is cleared by the dopamine transporter (DAT). In the PFC however, the number of presynaptic DAT is diminished, emphasizing the relative importance of catechol-O-methyltransferase (COMT) in dopamine metabolism. As a result, the role of COMT in the etiology of psychotic disorders is under constant debate. The present study investigated the role of COMT in prefrontal cortical dopamine metabolism by different neurochemical methods in COMT knockout (COMT-KO) mice. Pharmacological tools to inhibit other dopamine clearing mechanisms were also used for a more comprehensive and collective picture. In addition, this study investigated how a lack of the soluble (S-) COMT isoform affects the total COMT activity as well as the pharmacokinetics of orally administered L-dopa using mutant mice expressing only the membrane-bound (MB-) COMT isoform. Also the role of COMT in striatal and accumbal dopamine turnover during Δ9-tetrahydrocannabinol (THC) challenge was studied. We found markedly increased basal dopamine concentrations in the PFC, but not the striatum or nucleus accumbens (NAcc), of mice lacking COMT. Pharmacological inhibition of the noradrenaline transporter (NET) and monoamine oxidase (MAO) elevated prefrontal cortical dopamine levels several-fold, whereas inhibition of DAT did not. The lack of COMT doubled the dopamine raising effects of NET and MAO inhibition. No compensatory expression of either DAT or NET was found in the COMT-KO mice. The lack of S-COMT decreased the total COMT activity by 50-70 % and modified dopamine transmission and the pharmacokinetics of exogenous Ldopa in a sex and tissue specific manner. Finally, we found that subsequent tolcapone and THC increased dopamine levels in the NAcc, but not in the striatum. Conclusively, this study presents neurochemical evidence for the important role of COMT in the PFC and shows that COMT is responsible for about half of prefrontal cortical dopamine metabolism. This study also highlights the previously underestimated proportional role of MB-COMT and supports the clinical evidence of a gene x environment interaction between COMT and cannabis.