2 resultados para Excavated saprolite
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis examines the ruins of the medieval Bridgettine (Birgittan) monastery of Naantali (Vallis Gratiae, f. 1443) in Finland and the transformation of the site into a national heritage and a memory landscape. It was archaeologically surveyed in the 19th century by Professor Sven Gabriel Elmgren (1817 1897). His work was followed by Dr. Reinhold Hausen (1850 1942), who excavated the site in the 1870s. During this time the memories of Saint Bridget (Birgitta) in Sweden were also invented as heritage. Hausen published his results in 1922 thus forming the connection with the next generation of actors involved with the Naantali site: the magnate Amos Anderson (1878 1961), the teacher Julius Finnberg (1877 1955) and the archaeologist Juhani Rinne (1872 1950). They erected commemorative monuments etc. on the Naantali site, thus creating a memory landscape there. For them, the site represented the good homeland in connection with a western-oriented view of the history of Finland. The network of actors was connected to the Swedish researchers and so-called Birgitta Friends, such as state antiquarian Sigurd Curman (1879 1966), but also to the members of the Societas Sanctae Birgittae and the Society for the Embellishment of Pirita, among others. Historical jubilees as manifestations of the use of history were also arranged in Naantali in 1943, 1993 and 2003. It seems as if Naantali is needed in Finnish history from time to time after a period of crisis, i.e. after the Crimean War in the 1850s, the civil war of 1918, during World War II and also after the economic crisis of the early 1990s. In 2003, there was a stronger focus on the international Saint Bridget Jubilee in Sweden and all over Europe. Methodologically, the thesis belongs to the history of ideas, but also to research on the use of history, invented traditions and lieux de mémoire. The material for the work consists of public articles and scholarly texts in books or newspapers and letters produced by the actors and kept in archives in Finland, Sweden and Estonia, in addition to pictures and erected commemorative monuments in situ in the Western Finnish region. Keywords: Nådendal, Naantali monastery, Bridgettines, St. Bridget, use of history, lieux de mémoire, invented traditions, commemorative anatomy, memory landscape, Saint Bridget jubilees , S. G. Elmgren, R. Hausen, A. Anderson, J. Finnberg, J. Rinne, S. Curman, High Church Movement, Pirita, Vadstena.
Resumo:
This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.