34 resultados para Energy industries.

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO2, 21 t CH4, 184 t CO, 0.15 t N20, 5 t NOX and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO2, 2,900 t CH4, 25,300 t CO, 20 t N2O, 720 t NOX and 470 t NO per annum, while the total carbon released in the atmosphere would be 181,000 t annually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inadvertent climate modification has led to an increase in urban temperatures compared to the surrounding rural area. The main reason for the temperature rise is the altered energy portioning of input net radiation to heat storage and sensible and latent heat fluxes in addition to the anthropogenic heat flux. The heat storage flux and anthropogenic heat flux have not yet been determined for Helsinki and they are not directly measurable. To the contrary, turbulent fluxes of sensible and latent heat in addition to net radiation can be measured, and the anthropogenic heat flux together with the heat storage flux can be solved as a residual. As a result, all inaccuracies in the determination of the energy balance components propagate to the residual term and special attention must be paid to the accurate determination of the components. One cause of error in the turbulent fluxes is the fluctuation attenuation at high frequencies which can be accounted for by high frequency spectral corrections. The aim of this study is twofold: to assess the relevance of high frequency corrections to water vapor fluxes and to assess the temporal variation of the energy fluxes. Turbulent fluxes of sensible and latent heat have been measured at SMEAR III station, Helsinki, since December 2005 using the eddy covariance technique. In addition, net radiation measurements have been ongoing since July 2007. The used calculation methods in this study consist of widely accepted eddy covariance data post processing methods in addition to Fourier and wavelet analysis. The high frequency spectral correction using the traditional transfer function method is highly dependent on relative humidity and has an 11% effect on the latent heat flux. This method is based on an assumption of spectral similarity which is shown not to be valid. A new correction method using wavelet analysis is thus initialized and it seems to account for the high frequency variation deficit. Anyhow, the resulting wavelet correction remains minimal in contrast to the traditional transfer function correction. The energy fluxes exhibit a behavior characteristic for urban environments: the energy input is channeled to sensible heat as latent heat flux is restricted by water availability. The monthly mean residual of the energy balance ranges from 30 Wm-2 in summer to -35 Wm-2 in winter meaning a heat storage to the ground during summer. Furthermore, the anthropogenic heat flux is approximated to be 50 Wm-2 during winter when residential heating is important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena on tuottaa uutta tietoa Suomen kansantalouden rakenteesta ja lyhyen aikavälin kehityksestä 1920- ja 1930-luvulla. Tutkimus toteutettiin laatimalla kansantaloutta kuvaava panos-tuotostaulu vuodelle 1928 sekä sen laajennus, panos-tuotosmalli. Aineiston avulla kuvataan kansantalouden rakenteellisia riippuvuuksia, tuotannon avaintoimialoja sekä näiden vaikutusta kansantalouteen. Lisäksi tutkimuksessa tarkastellaan kansantalouden tuontiriippuvuutta sekä tuontitullien vaikutusta hintoihin 1930-luvun laman aikana. Tutkimuksen perusteella voitiin identifioida Suomen kansantalouden avaintoimialat vuonna 1928: maatalous, metsätalous, elintarviketeollisuus, puuteollisuus, paperiteollisuus ja rakennustoiminta. Erityisesti elintarviketeollisuuden vahva rooli kansantaloudessa oli kenties yllättävää, erityisesti kun huomioidaan kuinka vähän toimiala on saanut huomiota osakseen taloushistorian tutkimuksessa. Tutkimus osoitti, että Suomen vienti oli pääomavaltaisempaa kuin tuonti. Vaikka tämän tuloksen tulkinta on varauksellinen, tutkimus pystyi osoittamaan ja kvantifioimaan toimialojen työ- ja pääomapanoksen osuuden tuotoksesta yksityiskohtaisesti. Panos-tuotosmallilla arvioitiin puuteollisuuden, paperiteollisuuden ja rakennustoiminnan ajanjaksona 1928-32 tapahtuneen loppukäytön muutoksen vaikutusta kansantalouteen. Merkittävä havainto on, että rakennustoiminnan loppukäytön muutoksella oli erittäin suuri kasvua vähentävä vaikutus koko kansantaloudessa. Talonrakennusinvestointien romahtaminen aiheutti lähes 13 prosentin tuotannon laskun kansantaloudessa. Vaikutus oli jopa suurempi kuin puuteollisuuden viennin romahtamisen. Tulokset osoittavat toisaalta, että yksityisen kulutuksen merkitys kansantaloudelle oli erittäin vahva. Esimerkiksi puuteollisuuden viennin romahtaminen aiheutti yli 4 % tuotannon vähenemisen mutta huomioitaessa mallissa myös yksityisen kulutuksen väheneminen, oli kokonaisvaikutus yli 10 %. Yksityisen kulutuksen huomioiminen mallissa siis yli kaksinkertaisti toimialojen vaikutukset kansantalouteen. Tulokset vahvistivat aiemmissa tutkimuksissa esitettyjä johtopäätöksiä tullipolitiikasta ja osoittivat maatalouteen läheisesti liittyvän elintarviketeollisuuden olleen eniten suojeltu toimiala kansantaloudessa. Muut kotimarkkinoiden toimialat eivät kuitenkaan hyötyneet tullipolitiikasta lamakauden aikana. Panos-tuotoshintamallilla osoitettiin, ettei tullipolitiikka ollut niin onnistunutta kuin aikalaistutkimuksissa väitettiin, vaan tullit korkeintaan pystyivät hidastamaan hintojen alenemista. Tutkimuksen liitteenä esitetään kaikki keskeiset Suomen kansantaloutta vuonna 1928 kuvaavat tilastolliset taulukot, mukaan lukien käyttö- ja tarjontataulukot, panos-tuotostaulukot, panoskertoimet, Leontiefin käänteismatriisi sekä työ- ja pääomapanoskertoimet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power has grown fast internationally. It can reduce the environmental impact of energy production and increase energy security. Finland has turbine industry but wind electricity production has been slow, and nationally set capacity targets have not been met. I explored social factors that have affected the slow development of wind power in Finland by studying the perceptions of Finnish national level wind power actors. By that I refer to people who affect the development of wind power sector, such as officials, politicians, and representatives of wind industries and various organisations. The material consisted of interviews, a questionnaire, and written sources. The perceptions of wind power, its future, and methods to promote it were divided. They were studied through discourse analysis, content analysis, and scenario construction. Definition struggles affect views of the significance and potential of wind power in Finland, and also affect investments in wind power and wind power policy choices. Views of the future were demonstrated through scenarios. The views included scenarios of fast growth, but in the most pessimistic views, wind power was not thought to be competitive without support measures even in 2025, and the wind power capacity was correspondingly low. In such a scenario, policy tool choices were expected to remain similar to ones in use at the time of the interviews. So far, the development in Finland has followed closely this pessimistic scenario. Despite the scepticism about wind electricity production, wind turbine industry was seen as a credible industry. For many wind power actors as well as for the Finnish wind power policy, the turbine industry is a significant motive to promote wind power. Domestic electricity production and the export turbine industry are linked in discourse through so-called home market argumentation. Finnish policy tools have included subsidies, research and development funding, and information policies. The criteria used to evaluate policy measures were both process-oriented and value-based. Feed-in tariffs and green certificates that are common elsewhere have not been taken to use in Finland. Some interviewees considered such tools unsuitable for free electricity markets and for the Finnish policy style, dictatorial, and being against western values. Other interviewees supported their use because of their effectiveness. The current Finnish policy tools are not sufficiently effective to increase wind power production significantly. Marginalisation of wind power in discourses, pessimistic views of the future, and the view that the small consumer demand for wind electricity represents the political views of citizens towards promoting wind power, make it more difficult to take stronger policy measures to use. Wind power has not yet significantly contributed to the ecological modernisation of the energy sector in Finland, but the situation may change as the need to reduce emissions from energy production continues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cosmological inflation is the dominant paradigm in explaining the origin of structure in the universe. According to the inflationary scenario, there has been a period of nearly exponential expansion in the very early universe, long before the nucleosynthesis. Inflation is commonly considered as a consequence of some scalar field or fields whose energy density starts to dominate the universe. The inflationary expansion converts the quantum fluctuations of the fields into classical perturbations on superhorizon scales and these primordial perturbations are the seeds of the structure in the universe. Moreover, inflation also naturally explains the high degree of homogeneity and spatial flatness of the early universe. The real challenge of the inflationary cosmology lies in trying to establish a connection between the fields driving inflation and theories of particle physics. In this thesis we concentrate on inflationary models at scales well below the Planck scale. The low scale allows us to seek for candidates for the inflationary matter within extensions of the Standard Model but typically also implies fine-tuning problems. We discuss a low scale model where inflation is driven by a flat direction of the Minimally Supersymmetric Standard Model. The relation between the potential along the flat direction and the underlying supergravity model is studied. The low inflationary scale requires an extremely flat potential but we find that in this particular model the associated fine-tuning problems can be solved in a rather natural fashion in a class of supergravity models. For this class of models, the flatness is a consequence of the structure of the supergravity model and is insensitive to the vacuum expectation values of the fields that break supersymmetry. Another low scale model considered in the thesis is the curvaton scenario where the primordial perturbations originate from quantum fluctuations of a curvaton field, which is different from the fields driving inflation. The curvaton gives a negligible contribution to the total energy density during inflation but its perturbations become significant in the post-inflationary epoch. The separation between the fields driving inflation and the fields giving rise to primordial perturbations opens up new possibilities to lower the inflationary scale without introducing fine-tuning problems. The curvaton model typically gives rise to relatively large level of non-gaussian features in the statistics of primordial perturbations. We find that the level of non-gaussian effects is heavily dependent on the form of the curvaton potential. Future observations that provide more accurate information of the non-gaussian statistics can therefore place constraining bounds on the curvaton interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acceleration of the universe has been established but not explained. During the past few years precise cosmological experiments have confirmed the standard big bang scenario of a flat universe undergoing an inflationary expansion in its earliest stages, where the perturbations are generated that eventually form into galaxies and other structure in matter, most of which is non-baryonic dark matter. Curiously, the universe has presently entered into another period of acceleration. Such a result is inferred from observations of extra-galactic supernovae and is independently supported by the cosmic microwave background radiation and large scale structure data. It seems there is a positive cosmological constant speeding up the universal expansion of space. Then the vacuum energy density the constant describes should be about a dozen times the present energy density in visible matter, but particle physics scales are enormously larger than that. This is the cosmological constant problem, perhaps the greatest mystery of contemporary cosmology. In this thesis we will explore alternative agents of the acceleration. Generically, such are called dark energy. If some symmetry turns off vacuum energy, its value is not a problem but one needs some dark energy. Such could be a scalar field dynamically evolving in its potential, or some other exotic constituent exhibiting negative pressure. Another option is to assume that gravity at cosmological scales is not well described by general relativity. In a modified theory of gravity one might find the expansion rate increasing in a universe filled by just dark matter and baryons. Such possibilities are taken here under investigation. The main goal is to uncover observational consequences of different models of dark energy, the emphasis being on their implications for the formation of large-scale structure of the universe. Possible properties of dark energy are investigated using phenomenological paramaterizations, but several specific models are also considered in detail. Difficulties in unifying dark matter and dark energy into a single concept are pointed out. Considerable attention is on modifications of gravity resulting in second order field equations. It is shown that in a general class of such models the viable ones represent effectively the cosmological constant, while from another class one might find interesting modifications of the standard cosmological scenario yet allowed by observations. The thesis consists of seven research papers preceded by an introductory discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is an important material for the construction and pulping industries. Using x-ray diffraction the microfibril angle of Sitka spruce wood was studied in the first part of this thesis. Sitka spruce (Picea sitchensis [Bong.] Carr.) is native to the west coast of North America, but due to its fast growth rate, it has also been imported to Europe. So far, its nanometre scale properties have not been systematically characterised. In this thesis the microfibril angle of Sitka spruce was shown to depend significantly on the origin of the tree in the first annual rings near the pith. Wood can be further processed to separate lignin from cellulose and hemicelluloses. Solid cellulose can act as a reducer for metal ions and it is also a porous support for nanoparticles. By chemically reducing nickel or copper in the solid cellulose support it is possible to get small nanoparticles on the surfaces of the cellulose fibres. Cellulose supported metal nanoparticles can potentially be used as environmentally friendly catalysts in organic chemistry reactions. In this thesis the size of the nickel and copper containing nanoparticles were studied using anomalous small-angle x-ray scattering and wide-angle x-ray scattering. The anomalous small-angle x-ray scattering experiments showed that the crystallite size of the copper oxide nanoparticles was the same as the size of the nanoparticles, so the nanoparticles were single crystals. The nickel containing nanoparticles were amorphous, but crystallised upon heating. The size of the nanoparticles was observed to be smaller when the reduction of nickel was done in aqueous ammonium hydrate medium compared to reduction made in aqueous solution. Lignin is typically seen as the side-product of wood industries. Lignin is the second most abundant natural polymer on Earth, and it possesses potential to be a useful material for many purposes in addition to being an energy source for the pulp mills. In this thesis, the morphology of several lignins, which were produced by different separation methods from wood, was studied using small-angle and ultra small-angle x-ray scattering. It was shown that the fractal model previously proposed for the lignin structure does not apply to most of the extracted lignin types. The only lignin to which the fractal model could be applied was kraft lignin. In aqueous solutions the average shape of the low molar mass kraft lignin particles was observed to be elongated and flat. The average shape does not necessarily correspond to the shape of the individual particles because of the polydispersity of the fraction and due to selfassociation of the particles. Lignins, and especially lignosulfonate, have many uses as dispersants, binders and emulsion stabilisers. In this thesis work the selfassociation of low molar mass lignosulfonate macromolecules was observed using small-angle x-ray scattering. By taking into account the polydispersity of the studied lignosulfonate fraction, the shape of the lignosulfonate particles was determined to be flat by fitting an oblate ellipsoidal model to the scattering intensity.