5 resultados para Energy Optimization
em Helda - Digital Repository of University of Helsinki
Resumo:
The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.
Resumo:
Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual increment, as well as a significantly higher average carbon stock over the rotation.
Resumo:
Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.
Resumo:
Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.