13 resultados para Energia solar fotovoltaica

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the solar wind-magnetosphere-ionosphere coupling is studied observationally, with the main focus on the ionospheric currents in the auroral region. The thesis consists of five research articles and an introductory part that summarises the most important results reached in the articles and places them in a wider context within the field of space physics. Ionospheric measurements are provided by the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network, by the low-orbit CHAllenging Minisatellite Payload (CHAMP) satellite, by the European Incoherent SCATter (EISCAT) radar, and by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite. Magnetospheric observations, on the other hand, are acquired from the four spacecraft of the Cluster mission, and solar wind observations from the Advanced Composition Explorer (ACE) and Wind spacecraft. Within the framework of this study, a new method for determining the ionospheric currents from low-orbit satellite-based magnetic field data is developed. In contrast to previous techniques, all three current density components can be determined on a matching spatial scale, and the validity of the necessary one-dimensionality approximation, and thus, the quality of the results, can be estimated directly from the data. The new method is applied to derive an empirical model for estimating the Hall-to-Pedersen conductance ratio from ground-based magnetic field data, and to investigate the statistical dependence of the large-scale ionospheric currents on solar wind and geomagnetic parameters. Equations describing the amount of field-aligned current in the auroral region, as well as the location of the auroral electrojets, as a function of these parameters are derived. Moreover, the mesoscale (10-1000 km) ionospheric equivalent currents related to two magnetotail plasma sheet phenomena, bursty bulk flows and flux ropes, are studied. Based on the analysis of 22 events, the typical equivalent current pattern related to bursty bulk flows is established. For the flux ropes, on the other hand, only two conjugate events are found. As the equivalent current patterns during these two events are not similar, it is suggested that the ionospheric signatures of a flux rope depend on the orientation and the length of the structure, but analysis of additional events is required to determine the possible ionospheric connection of flux ropes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the most striking natural phenomena affecting ozone are solar proton events (SPE), during which high-energy protons precipitate into the middle atmosphere in the polar regions. Ionisation caused by the protons results in changes in the lower ionosphere, and in production of neutral odd nitrogen and odd hydrogen species which then destroy ozone in well-known catalytic chemical reaction chains. Large SPEs are able to decrease the ozone concentration of upper stratosphere and mesosphere, but are not expected to significantly affect the ozone layer at 15--30~km altitude. In this work we have used the Sodankylä Ion and Neutral Chemistry Model (SIC) in studies of the short-term effects caused by SPEs. The model results were found to be in a good agreement with ionospheric observations from incoherent scatter radars, riometers, and VLF radio receivers as well as with measurements from the GOMOS/Envisat satellite instrument. For the first time, GOMOS was able to observe the SPE effects on odd nitrogen and ozone in the winter polar region. Ozone observations from GOMOS were validated against those from MIPAS/Envisat instrument, and a good agreement was found throughout the middle atmosphere. For the case of the SPE of October/November 2003, long-term ozone depletion was observed in the upper stratosphere. The depletion was further enhanced by the descent of odd nitrogen from the mesosphere inside the polar vortex, until the recovery occurred in late December. During the event, substantial diurnal variation of ozone depletion was seen in the mesosphere, caused mainly by the the strong diurnal cycle of the odd hydrogen species. In the lower ionosphere, SPEs increase the electron density which is very low in normal conditions. Therefore, SPEs make radar observations easier. In the case of the SPE of October, 1989, we studied the sunset transition of negative charge from electrons to ions, a long-standing problem. The observed phenomenon, which is controlled by the amount of solar radiation, was successfully explained by considering twilight changes in both the rate of photodetachment of negative ions and concentrations of minor neutral species. Changes in the magnetic field of the Earth control the extent of SPE-affected area. For the SPE of November 2001, the results indicated that for low and middle levels of geomagnetic disturbance the estimated cosmic radio noise absorption levels based on a magnetic field model are in a good agreement with ionospheric observations. For high levels of disturbance, the model overestimates the stretching of the geomagnetic field and the geographical extent of SPE-affected area. This work shows the importance of ionosphere-atmosphere interaction for SPE studies. By using both ionospheric and atmospheric observations, we have been able to cover for the most part the whole chain of SPE-triggered processes, from proton-induced ionisation to depletion of ozone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar flares were first observed by plain eye in white light by William Carrington in England in 1859. Since then these eruptions in the solar corona have intrigued scientists. It is known that flares influence the space weather experienced by the planets in a multitude of ways, for example by causing aurora borealis. Understanding flares is at the epicentre of human survival in space, as astronauts cannot survive the highly energetic particles associated with large flares in high doses without contracting serious radiation disease symptoms, unless they shield themselves effectively during space missions. Flares may be at the epicentre of man s survival in the past as well: it has been suggested that giant flares might have played a role in exterminating many of the large species on Earth, including dinosaurs. Having said that prebiotic synthesis studies have shown lightning to be a decisive requirement for amino acid synthesis on the primordial Earth. Increased lightning activity could be attributed to space weather, and flares. This thesis studies flares in two ways: in the spectral and the spatial domain. We have extracted solar spectra using three different instruments, namely GOES (Geostationary Operational Environmental Satellite), RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and XSM (X-ray Solar Monitor) for the same flares. The GOES spectra are low resolution obtained with a gas proportional counter, the RHESSI spectra are higher resolution obtained with Germanium detectors and the XSM spectra are very high resolution observed with a silicon detector. It turns out that the detector technology and response influence the spectra we see substantially, and are important to understanding what conclusions to draw from the data. With imaging data, there was not such a luxury of choice available. We used RHESSI imaging data to observe the spatial size of solar flares. In the present work the focus was primarily on current solar flares. However, we did make use of our improved understanding of solar flares to observe young suns in NGC 2547. The same techniques used with solar monitors were applied with XMM-Newton, a stellar X-ray monitor, and coupled with ground based Halpha observations these techniques yielded estimates for flare parameters in young suns. The material in this thesis is therefore structured from technology to application, covering the full processing path from raw data and detector responses to concrete physical parameter results, such as the first measurement of the length of plasma flare loops in young suns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis acceleration of energetic particles at collisionless shock waves in space plasmas is studied using numerical simulations, with an emphasis on physical conditions applicable to the solar corona. The thesis consists of four research articles and an introductory part that summarises the main findings reached in the articles and discusses them with respect to theory of diffusive shock acceleration and observations. This thesis gives a brief review of observational properties of solar energetic particles and discusses a few open questions that are currently under active research. For example, in a few large gradual solar energetic particle events the heavy ion abundance ratios and average charge states show characteristics at high energies that are typically associated with flare-accelerated particles, i.e. impulsive events. The role of flare-accelerated particles in these and other gradual events has been discussed a lot in the scientific community, and it has been questioned if and how the observed features can be explained in terms of diffusive shock acceleration at shock waves driven by coronal mass ejections. The most extreme solar energetic particle events are the so-called ground level enhancements where particle receive so high energies that they can penetrate all the way through Earth's atmosphere and increase radiation levels at the surface. It is not known what conditions are required for acceleration into GeV/nuc energies, and the presence of both very fast coronal mass ejections and X-class solar flares makes it difficult to determine what is the role of these two accelerators in ground level enhancements. The theory of diffusive shock acceleration is reviewed and its predictions discussed with respect to the observed particle characteristics. We discuss how shock waves can be modeled and describe in detail the numerical model developed by the author. The main part of this thesis consists of the four scientific articles that are based on results of the numerical shock acceleration model developed by the author. The novel feature of this model is that it can handle complex magnetic geometries which are found, for example, near active regions in the solar corona. We show that, according to our simulations, diffusive shock acceleration can explain the observed variations in abundance ratios and average charge states, provided that suitable seed particles and magnetic geometry are available for the acceleration process in the solar corona. We also derive an injection threshold for diffusive shock acceleration that agrees with our simulation results very well, and which is valid under weakly turbulent conditions. Finally, we show that diffusive shock acceleration can produce GeV/nuc energies under suitable coronal conditions, which include the presence of energetic seed particles, a favourable magnetic geometry, and an enhanced level of ambient turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first observations of solar X-rays date back to late 1940 s. In order to observe solar X-rays the instruments have to be lifted above the Earth s atmosphere, since all high energy radiation from the space is almost totally attenuated by it. This is a good thing for all living creatures, but bad for X-ray astronomers. Detectors observing X-ray emission from space must be placed on-board satellites, which makes this particular discipline of astronomy technologically and operationally demanding, as well as very expensive. In this thesis, I have focused on detectors dedicated to observing solar X-rays in the energy range 1-20 keV. The purpose of these detectors was to measure solar X-rays simultaneously with another X-ray spectrometer measuring fluorescence X-ray emission from the Moon surface. The X-ray fluorescence emission is induced by the primary solar X-rays. If the elemental abundances on the Moon were to be determined with fluorescence analysis methods, the shape and intensity of the simultaneous solar X-ray spectrum must be known. The aim of this thesis is to describe the characterization and operation of our X-ray instruments on-board two Moon missions, SMART-1 and Chandrayaan-1. Also the independent solar science performance of these two almost similar X-ray spectrometers is described. These detectors have the following two features in common. Firstly, the primary detection element is made of a single crystal silicon diode. Secondly, the field of view is circular and very large. The data obtained from these detectors are spectra with a 16 second time resolution. Before launching an instrument into space, its performance must be characterized by ground calibrations. The basic operation of these detectors and their ground calibrations are described in detail. Two C-flares are analyzed as examples for introducing the spectral fitting process. The first flare analysis shows the fit of a single spectrum of the C1-flare obtained during the peak phase. The other analysis example shows how to derive the time evolution of fluxes, emission measures (EM) and temperatures through the whole single C4 flare with the time resolution of 16 s. The preparatory data analysis procedures are also introduced in detail. These are required in spectral fittings of the data. A new solar monitor design equipped with a concentrator optics and a moderate size of field of view is also introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age-old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucual role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large-scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean-field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some of the current issues of the solar simulations are put forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viime aikoina ilmastonmuutos, fossiilisten polttoaineiden väheneminen ja niiden hinnan nousu ovat lisänneet merkittävästi maailmanlaajuista kiinnostusta uusiutuviin energiavaroihin. Suomessa uusiutuvien energialähteiden käytössä on jo pitkään panostettu metsäteollisuuden sivutuotevirtana tuottamaan puuperäiseen biomassaan, jota metsäteollisuus käyttää energiantuotantoonsa. Metsäteollisuuden jätevesien käsittelyssä syntyy erilaisia lietteitä, jotka joko uusiokäytetään tai hävitetään polttamalla tai sijoittamalla kaatopaikalle. Erityisesti biolietteiden uusiokäyttö on hankalaa ja kaatopaikkasijoitus tulevaisuudessa mahdotonta tai ainakin kustannuksiltaan kohtuutonta. Käytännössä liete hävitetään polttamalla ja kuivaamalla siitä tulee polttoaine. Lietteiden energiakäyttö on järkevin tapa hävittää jäteliete. Lietteiden korkean vesipitoisuuden vuoksi ne tulee kuitenkin kuivata ennen polttoa. Lietteen kuivaaminen sekundäärienergiavirralla eli metsäteollisuusprosesseissa sivutuotteena muodostuvalla ns. hukkalämmöllä lisää lietteen poltosta saatavaa energiamäärää ja korvaa fossiilisten polttoaineiden käyttöä. Tutkimuksen tavoitteena oli selvittää lietteen kuivaukseen optimaalisin kuoren ja lietteen seossuhde eri kuivausparametrejä vaihdellen. Kokeellinen työ aloitettiin rakentamalla energiatekniikan koehalliin laboratoriokokoluokan kiintopetikuivuri, jossa kuivumista tutkittiin puhaltamalla polttoainepedin läpi lämmitettyä ilmaa. Kuivattavina polttoaineina olivat kuoren ja lietteen seos tai pelkkä kuori ja liete erilaisilla massoilla ja erilaisilla prosenttisilla suhteilla ja erilaisissa lämpötiloissa. Kuivumiskäyrien määritys perustui massanmuutokseen. Koelaitteessa olivat anturit lämpötilan mittausta varten, jotta lämpötila saatiin säädettyä ja seurattua kokeen edellyttämällä tavalla. Lämpötilat ja painonmuutokset tallentuivat koetta tehdessä tietokoneelle. Kuivauskokeet osoittivat, että liete-kuori seos kuivuu hyvin kiintopedissä kun lietteen massaosuus seoksessa on korkeintaan 50 %. Lietteen massaosuuden ollessa tätä suurempi kuivaaminen ei enää ole tehokasta, mikä johtuu luultavasti ilman suuresta kanavoitumisesta kuivauspedissä. Kuorta kuivatessa lämpötilan nosto 50 °C:stä 70 °C:een oli huomattavasti tehokkaampaa kuin 70 °C:stä 90 °C:een, ajallisesti ero oli noin kaksinkertainen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.