3 resultados para Electrical distribution systems
em Helda - Digital Repository of University of Helsinki
Resumo:
Yersinia enterocolitica and Yersinia pseudotuberculosis are among the major enteropathogenic bacteria causing infections in humans in many industrialized countries. In Finland, Y. pseudotuberculosis has caused 10 outbreaks among humans during 1997-2008. Some of these outbreaks have been very extensive involving over 400 cases; mainly children attending schools and day-care. Y. enterocolitica, on the contrary, has caused mainly a large number of sporadic human infections in Finland. Y. pseudotuberculosis is widespread in nature, causing infections in a variety of domestic and wild animals. Foodborne transmission of human infections has long been suspected, however, attempts to trace the pathogen have been unsuccessful before this study that epidemiologically linked Y. pseudotuberculosis to a specific food item. Furthermore, due to modern food distribution systems, foodborne outbreaks usually involve many geographically separate infection clusters difficult to identify as part of the same outbreak. Among pathogenic Y. enterocolitica, the global predominance of one genetically homogeneous type (bioserotype 4/O:3) is a challenge to the development of genetic typing methods discriminatory enough for epidemiological purposes, for example, for tracing back to the sources of infections. Furthermore, the diagnostics of Y. enterocolitica infections is hampered because clinical laboratories easily misidentify some other members of the Yersinia species (Y. enterocolitica–like species) as Y. enterocolitica. This results in misleading information on the prevalence and clinical significance of various Yersinia isolates. The aim of this study was to develop and optimize molecular typing methods to be used in epidemiological investigations of Y. enterocolitica and Y. pseudotuberculosis, particularly in active surveillance and outbreak investigations of Y. pseudotuberculosis isolates. The aim was also to develop a simplified set of phenotypic tests that could be used in routine diagnostic laboratories for the correct identification of Y. enterocolitica and Y. enterocolitica –like species. A PFGE method designed here for typing of Y. pseudotuberculosis was efficient in linking the geographically dispersed and apparently unrelated Y. pseudotuberculosis infections as parts of the same outbreak. It proved to be useful in active laboratory-based surveillance of Y. pseudotuberculosis outbreaks. Throughout the study period, information about the diversity of genotypes among outbreak and non-outbreak related strains of human origin was obtained. Also, to our knowledge, this was the first study to epidemiologically link a Y. pseudotuberculosis outbreak of human illnesses to a specific food item, iceberg lettuce. A novel epidemiological typing method based on the use of a repeated genomic region (YeO:3RS) as a probe was developed for the detection and differentiation between strains of Y. enterocolitica subspecies palearctica. This method was able to increase the discrimination in a set of 106 previously PFGE typed Finnish Y. enterocolitica bioserotype 4/O:3 strains among which two main PFGE genotypes had prevailed. The developed simplified method was a more reliable tool than the commercially available biochemical test kits for differentiation between Y. enterocolitica and Y. enterocolitica –like species. In Finland, the methods developed for Y. enterocolitica and Y. pseudotuberculosis have been used to improve the identification protocols and in subsequent outbreak investigations.
Resumo:
Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.